1H NMR and EPR Spectroscopies Investigation of Alginate Cross-Linking by Divalent Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Alginate Samples
2.2. Liquid State 1H MNR Spectroscopy Study
2.3. EPR Spectroscopy Study
3. Results and Discussion
3.1. Liquid State 1H MNR Spectroscopy Results
3.2. EPR Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yong, K.; Mooney, D.J. Progress in Polymer Science Alginate: Properties and Biomedical Applications. Prog. Polym. Sci. 2012, 37, 106–126. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Zhao, X. Alginate Hydrogel Dressings for Advanced Wound Management. Int. J. Biol. Macromol. 2020, 162, 1414–1428. [Google Scholar] [CrossRef]
- Paredes Juárez, G.A.; Spasojevic, M.; Faas, M.M.; de Vos, P. Immunological and Technical Considerations in Application of Alginate-Based Microencapsulation Systems. Front. Bioeng. Biotechnol. 2014, 2, 26. [Google Scholar] [CrossRef] [Green Version]
- Chaturvedi, A.A.; Lomme, R.M.; Hendriks, T.; van Goor, H. Prevention of Postsurgical Adhesions Using an Ultrapure Alginate-Based Gel. Br. J. Surg. 2013, 100, 904–910. [Google Scholar] [CrossRef] [PubMed]
- Hernández-González, A.C.; Téllez-Jurado, L.; Rodríguez-Lorenzo, L.M. Alginate Hydrogels for Bone Tissue Engineering, from Injectables to Bioprinting: A Review. Carbohydr. Polym. 2020, 229, 115514. [Google Scholar] [CrossRef] [PubMed]
- Brochhausen, C.; Schmitt, V.H.; Hollemann, D.; Tapprich, C.; Krämer, B.; Wallwiener, C.; Hierlemann, H.; Zehbe, R.; Planck, H.; Kirkpatrick, C.J. Current Strategies and Future Perspectives for Intraperitoneal Adhesion Prevention. J. Gastrointest. Surg. 2012, 16, 1256–1274. [Google Scholar] [CrossRef]
- Schaumann, K.; Weide, G. Enzymatic Degradation of Alginate by Marine Fungi. Hydrobiologia 1990, 204, 589–596. [Google Scholar] [CrossRef]
- Piras, C.C.; Smith, D.K. Multicomponent Polysaccharide Alginate-Based Bioinks. J. Mater. Chem. B 2020, 8, 8171–8188. [Google Scholar] [CrossRef]
- Lopes, M.; Abrahim, B.; Veiga, F.; Seiça, R.; Cabral, L.M.; Arnaud, P.; Andrade, J.C.; Ribeiro, A.J. Preparation Methods and Applications behind Alginate-Based Particles. Expert Opin. Drug Deliv. 2017, 14, 769–782. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, L.; Weng, L.; Deng, B. Strontium Ion Substituted Alginate-Based Hydrogel Fibers and Its Coordination Binding Model. J. Appl. Polym. Sci. 2020, 137, 48571. [Google Scholar] [CrossRef]
- Kuo, C.K.; Ma, P.X. Maintaining Dimensions and Mechanical Properties of Ionically Crosslinked Alginate Hydrogel Scaffolds in Vitro. J. Biomed. Mater. Res. Part A 2008, 84, 899–907. [Google Scholar] [CrossRef] [Green Version]
- Kaygusuz, H.; Evingür, G.A.; Pekcan, Ö.; von Klitzing, R.; Erim, F.B. Surfactant and Metal Ion Effects on the Mechanical Properties of Alginate Hydrogels. Int. J. Biol. Macromol. 2016, 92, 220–224. [Google Scholar] [CrossRef]
- Gotoh, T.; Matsushima, K.; Kikuchi, K.I. Adsorption of Cu and Mn on Covalently Cross-Linked Alginate Gel Beads. Chemosphere 2004, 55, 57–64. [Google Scholar] [CrossRef]
- Neves, M.I.; Moroni, L.; Barrias, C.C. Modulating Alginate Hydrogels for Improved Biological Performance as Cellular 3D Microenvironments. Front. Bioeng. Biotechnol. 2020, 8, 665. [Google Scholar] [CrossRef]
- Hecht, H.; Srebnik, S. Structural Characterization of Sodium Alginate and Calcium Alginate. Biomacromolecules 2016, 17, 2160–2167. [Google Scholar] [CrossRef] [PubMed]
- Herrmann, A.; Haag, R.; Schedler, U. Hydrogels and Their Role in Biosensing Applications. Adv. Healthc. Mater. 2021, 10, 2100062. [Google Scholar] [CrossRef]
- Mørch, Ý.A.; Donati, I.; Strand, B.L.; Skjåk-Bræk, G. Effect of Ca2+, Ba2+, and Sr2+ on Alginate Microbeads. Biomacromolecules 2006, 7, 1471–1480. [Google Scholar] [CrossRef]
- Manz, B.; Hillgärtner, M.; Zimmermann, H.; Zimmermann, D.; Volke, F.; Zimmermann, U. Cross-Linking Properties of Alginate Gels Determined by Using Advanced NMR Imaging and Cu2+ as Contrast Agent. Eur. Biophys. J. 2004, 33, 50–58. [Google Scholar] [CrossRef]
- Lattner, D.; Flemming, H.C.; Mayer, C. 13C-NMR Study of the Interaction of Bacterial Alginate with Bivalent Cations. Int. J. Biol. Macromol. 2003, 33, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Deramos, C.M.; Irwin, A.E.; Nauss, J.L.; Stout, B.E.U. C NMR and Molecular Modeling Studies of Alginic Acid Binding with Alkaline Earth and Lanthanide Metal Ions. Inorg. Chim. Act. 1997, 256, 69–75. [Google Scholar] [CrossRef]
- Emmerichs, N.; Wingender, J.; Flemming, H.C.; Mayer, C. Interaction between Alginates and Manganese Cations: Identification of Preferred Cation Binding Sites. Int. J. Biol. Macromol. 2004, 34, 73–79. [Google Scholar] [CrossRef]
- Llanes, F.; Sauriol, F.; Morin, F.G.; Perlin, A.S. An Examination of Sodium Alginate from Sargassum by NMR Spectrometry. Can. J. Chem. 1997, 13, 104–116. [Google Scholar]
- Brus, J.; Urbanová, M.; Czernek, J.; Pavelkova, M.; Kubova, K.; Vyslouzil, J.; Abbrent, S.; Konefal, R.; Horsky, J.; Vetchy, D.; et al. The Structure and Dynamics of Alginate Gels Crosslinked by Polyvalent Ions Probed via Solid State NMR Spectroscopy. Biomacromolecules 2017, 18, 2478–2488. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hari, D.; Kannan, A. A DFT Study on Ca-Alginate Interactions with Divalent Transition Metals. Mater. Today Proc. 2022, 62, 1532–1543. [Google Scholar] [CrossRef]
- Agulhon, P.; Markova, V.; Robitzer, M.; Quignard, F.; Mineva, T. Structure of Alginate Gels: Interaction of Diuronate Units with Divalent Cations from Density Functional Calculations. Biomacromolecules 2012, 13, 1899–1907. [Google Scholar] [CrossRef] [PubMed]
- Roquero, D.M.; Katz, E. “Smart” Alginate Hydrogels in Biosensing, Bioactuation and Biocomputing: State-of-the-Art and Perspectives. Sens. Actuators Rep. 2022, 4, 100095. [Google Scholar] [CrossRef]
- Bertrand, P. Electron Paramagnetic Resonance Spectroscopy; Springer: Berlin/Heidelberg, Germany, 2022; ISBN 9789401789929. [Google Scholar]
- Santi, C.; Coppetta, D.; Santoro, S.; Basta, G.; Montanucci, P.; Racanicchi, L.; Calafiore, R. NMR Analysis of Non Hydrolyzed Samples of Sodium Alginate. In Proceedings of the 12th International Electronic Conference on Synthetic Organic Chemistry (ECSOC’12), 1–30 November 2008. [Google Scholar] [CrossRef] [Green Version]
- Murzakhanov, F.; Mamin, G.; Voloshin, A.; Klimashina, E.; Putlyaev, V.; Doronin, V.; Bakhteev, S.; Yusupov, R.; Gafurov, M.; Orlinskii, S. Conventional Electron Paramagnetic Resonance of Mn2+ in Synthetic Hydroxyapatite at Different Concentrations of the Doped Manganese. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 155, p. 012006. [Google Scholar] [CrossRef] [Green Version]
- Kozlevčar, B.; Šegedin, P. Structural Analysis of a Series of Copper(II) Coordination Compounds and Correlation with Their Magnetic Properties. Croat. Chem. Act. 2008, 81, 369–379. [Google Scholar]
- Valko, M.; Pelikan, P.; Biskupic, S.; Mazur, M. ESR Spectra of Copper(II) Complexes in the Solids. Chem. Pap. 1990, 44, 805–813. [Google Scholar]
- Faggi, E.; Gavara, R.; Bolte, M.; Fajarí, L.; Juliá, L.; Rodríguez, L.; Alfonso, I. Copper(II) Complexes of Macrocyclic and Open-Chain Pseudopeptidic Ligands: Synthesis, Characterization and Interaction with Dicarboxylates. Dalt. Trans. 2015, 44, 12700–12710. [Google Scholar] [CrossRef] [Green Version]
- Rui Rodrigues, J.; Lagoa, R. Copper Ions Binding in Cu-Alginate Gelation. J. Carbohydr. Chem. 2006, 25, 219–232. [Google Scholar] [CrossRef]
Cation | Quantity, μmol |
---|---|
Ca2+ | 0.3; 1; 2.5; 5.5; 25 |
Sr2+ | 0.3; 1; 2.5 |
Zn2+ | 0.1; 0.3; 1 |
Co2+ | 0.1; 0.3; 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forysenkova, A.A.; Ivanova, V.A.; Fadeeva, I.V.; Mamin, G.V.; Rau, J.V. 1H NMR and EPR Spectroscopies Investigation of Alginate Cross-Linking by Divalent Ions. Materials 2023, 16, 2832. https://doi.org/10.3390/ma16072832
Forysenkova AA, Ivanova VA, Fadeeva IV, Mamin GV, Rau JV. 1H NMR and EPR Spectroscopies Investigation of Alginate Cross-Linking by Divalent Ions. Materials. 2023; 16(7):2832. https://doi.org/10.3390/ma16072832
Chicago/Turabian StyleForysenkova, Anna A., Valeria A. Ivanova, Inna V. Fadeeva, Georgy V. Mamin, and Julietta V. Rau. 2023. "1H NMR and EPR Spectroscopies Investigation of Alginate Cross-Linking by Divalent Ions" Materials 16, no. 7: 2832. https://doi.org/10.3390/ma16072832
APA StyleForysenkova, A. A., Ivanova, V. A., Fadeeva, I. V., Mamin, G. V., & Rau, J. V. (2023). 1H NMR and EPR Spectroscopies Investigation of Alginate Cross-Linking by Divalent Ions. Materials, 16(7), 2832. https://doi.org/10.3390/ma16072832