Starch-Directed Synthesis of Worm-Shaped Silica Microtubes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.3. Preparation of Silica-Starch Gel
2.4. Digestion of Starch with Amylase
2.4.1. First Digestion
2.4.2. Second Digestion
3. Results
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Iler, R.K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry; John Wiley & Sons: New York, NY, USA, 1979; p. 892. [Google Scholar]
- Simpson, T.L.; Volcani, B.E. Silicon and Siliceous Structures in Biological Systems; Springer: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Brook, M.A. Siloxanes Based on T and Q Units. In Silicon in Organic, Organometallic and Polymer Chemistry; John Wiley & Sons: New York, NY, USA, 2000; pp. 309–339. [Google Scholar]
- Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112. [Google Scholar] [CrossRef] [Green Version]
- Feinle, A.; Elsaesser, M.S.; Hüsing, N. Sol–gel synthesis of monolithic materials with hierarchical porosity. Chem. Soc. Rev. 2016, 45, 3377–3399. [Google Scholar] [CrossRef]
- Feinle, A.; Hüsing, N. Porous Hybrid Materials. In Hybrid Materials—Synthesis, Characterization, Applications, 2nd ed.; Kickelbick, G., Ed.; Wiley-VCH: Weinheim, Germany, 2016; pp. 175–223. [Google Scholar]
- Habeche, F.; Hachemaoui, M.; Mokhtar, A.; Chikh, K.; Benali, F.; Mekki, A.; Zaoui, F.; Cherifi, Z.; Boukoussa, B. Recent Advances on the Preparation and Catalytic Applications of Metal Complexes Supported-Mesoporous Silica MCM-41 (Review). J. Inorg. Organomet. Polym. 2020, 30, 4245–4268. [Google Scholar] [CrossRef]
- Harada, M.; Adachi, M. Surfactant-Mediated Fabrication of Silica Nanotubes. Adv. Mater. 2000, 12, 839–841. [Google Scholar] [CrossRef]
- Ding, S.; Liu, N.; Li, X.; Peng, L.; Guo, X.; Ding, W. Silica Nanotubes and Their Assembly Assisted by Boric Acid to Hierachical Mesostructures. Langmuir 2010, 26, 4572–4575. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Xie, X.; Wang, Y.; Pang, X.; Jia, Z. Hollow Silica Nanotubes for Space-Confined Synthesis of Noble Metal Nanorods and Nanopeapods. ACS Appl. Nano Mater. 2021, 4, 6075–6082. [Google Scholar] [CrossRef]
- Brunner, E. Double-walled silica nanotubes. Nat. Mater. 2007, 6, 398–399. [Google Scholar] [CrossRef]
- Jia, C.; Song, J.; Jin, Y.; Rojas, O.J. Controlled-release drug carriers based hierarchical silica microtubes templated from cellulose acetate nanofibers. J. Appl. Polym. Sci. 2015, 132. [Google Scholar] [CrossRef]
- Patzsch, J.; Schneider, J.J. Pseudomorphic transformation of amorphous silica microtubes into mesoporous MCM-41 type silica tubes. Synthesis, characterization and surface functionalization with titania, vanadia and zirconia. Dalton Trans. 2013, 42, 1451–1460. [Google Scholar] [CrossRef]
- Horst, C.; Pagno, C.H.; Flores, S.H.; Costa, T.M.H. Hybrid starch/silica films with improved mechanical properties. J. Sol-Gel Sci. Technol. 2020, 95, 52–65. [Google Scholar] [CrossRef]
- Zhu, J.; Wu, H.; Wang, D.; Ma, Y.; Jia, L. A Facile Strategy for Fabrication Lysozyme-Loaded Mesoporous Silica Nanotubes from Electrospun Silk Fibroin Nanofiber Templates. Molecules 2021, 26, 1073. [Google Scholar] [CrossRef] [PubMed]
- Paik, P.; Gedanken, A.; Mastai, Y. Enantioselective Separation Using Chiral Mesoporous Spherical Silica Prepared by Templating of Chiral Block Copolymers. ACS Appl. Mater. Interfaces 2009, 1, 1834–1842. [Google Scholar] [CrossRef] [PubMed]
- Fernandez Caresani, J.R.; Dallegrave, A.; dos Santos, J.H.Z. Amylases immobilization by sol–gel entrapment: Application for starch hydrolysis. J. Sol-Gel Sci. Technol. 2020, 94, 229–240. [Google Scholar] [CrossRef]
- Kovarik, P.; Hodgson, R.J.; Covey, T.; Brook, M.A.; Brennan, J.D. Capillary-scale frontal affinity chromatography/MALDI tandem mass spectrometry using protein-doped monolithic silica columns. Anal. Chem. 2005, 77, 3340–3350. [Google Scholar] [CrossRef]
- Sui, D.; Yao, M.; Si, L.; Yan, K.; Shi, J.; Wang, J.; Xu, C.C.; Zhang, Y. Biomass-derived carbon coated SiO2 nanotubes as superior anode for lithium-ion batteries. Carbon 2023, 205, 510–518. [Google Scholar] [CrossRef]
- Zhou, J.; Zhou, M.; Caruso, R.A. Agarose Template for the Fabrication of Macroporous Metal Oxide Structures. Langmuir 2006, 22, 3332–3336. [Google Scholar] [CrossRef]
- Zhang, B.; Davis, S.A.; Mann, S. Starch Gel Templating of Spongelike Macroporous Silicalite Monoliths and Mesoporous Films. Chem. Mat. 2002, 14, 1369–1375. [Google Scholar] [CrossRef]
- Jackson, E.; Ferrari, M.; Cuestas-Ayllon, C.; Fernández-Pacheco, R.; Perez-Carvajal, J.; de la Fuente, J.M.; Grazú, V.; Betancor, L. Protein-Templated Biomimetic Silica Nanoparticles. Langmuir 2015, 31, 3687–3695. [Google Scholar] [CrossRef]
- Rima, S.; Lattuada, M. Protein Amyloid Fibrils as Template for the Synthesis of Silica Nanofibers, and Their Use to Prepare Superhydrophobic, Lotus-Like Surfaces. Small 2018, 14, 1802854. [Google Scholar] [CrossRef] [Green Version]
- Han, J.; Hu, L.; Zhang, Y.; Jiang, Z.; Zhou, Y. In situ synthesis of hierarchically porous silica ceramics with unidirectionally aligned channel structure. Scr. Mater. 2010, 62, 431–434. [Google Scholar] [CrossRef]
- Hartmann, S.; Brandhuber, D.; Hüsing, N. Glycol-Modified Silanes: Novel Possibilities for the Synthesis of Hierarchically Organized (Hybrid) Porous Materials. Acc. Chem. Res. 2007, 40, 885–894. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Z.; Chen, Y.; Hodgson, R.J.; Brook, M.A.; Brennan, J.D. Macroporous silica monoliths derived from glyceroxysilanes: Controlling gel formation and pore structure. Macromol. Symp. 2005, 226, 253–261. [Google Scholar] [CrossRef]
- Cruz-Aguado, J.A.; Chen, Y.; Zhang, Z.; Brook, M.A.; Brennan, J.D. Entrapment of Src protein tyrosine kinase in sugar-modified silica. Anal. Chem. 2004, 76, 4182–4188. [Google Scholar] [CrossRef] [PubMed]
- Brook, M.A.; Chen, Y.; Guo, K.; Zhang, Z.; Brennan, J.D. Sugar-modified silanes: Precursors for silica monoliths. J. Mater. Chem. 2004, 14, 1469–1479. [Google Scholar] [CrossRef]
- Cruz-Aguado, J.A.; Chen, Y.; Zhang, Z.; Elowe, N.H.; Brook, M.A.; Brennan, J.D. Ultrasensitive ATP Detection Using Firefly Luciferase Entrapped in Sugar-Modified Sol−Gel-Derived Silica. J. Am. Chem. Soc. 2004, 126, 6878–6879. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Z.; Sui, X.; Brennan, J.D.; Brook, M.A. Reduced shrinkage of sol–gel derived silicas using sugar-based silsesquioxane precursors. J. Mater. Chem. 2005, 15, 3132–3141. [Google Scholar] [CrossRef]
- Brook, M.A.; Chen, Y.; Guo, K.; Zhang, Z.; Jin, W.; Deisingh, A.; Cruz-Aguado, J.; Brennan, J.D. Proteins entrapped in silica monoliths prepared from glyceroxysilanes. J. Sol-Gel Sci. Technol. 2004, 31, 343–348. [Google Scholar] [CrossRef]
- Nakanishi, K.; Komura, H.; Takahashi, R.; Soga, N. Phase Separation in Silica Sol–Gel System Containing Poly(ethylene oxide). I. Phase Relation and Gel Morphology. Bull. Chem. Soc. Jpn. 1994, 67, 1327–1335. [Google Scholar] [CrossRef]
- Heinemann, C.; Cardinaux, F.; Scheffold, F.; Schurtenberger, P.; Escher, F.; Conde-Petit, B. Tracer microrheology of γ-dodecalactone induced gelation of aqueous starch dispersions. Carbohydr. Polym. 2004, 55, 155–161. [Google Scholar] [CrossRef]
- Fazeli, M.; Lipponen, J. Developing Self-Assembled Starch Nanoparticles in Starch Nanocomposite Films. ACS Omega 2022, 7, 44962–44971. [Google Scholar] [CrossRef]
- Anastas, P.T.; Warner, J.C. Green Chemistry: Theory and Practice; Oxford University Press: Oxford, UK, 1998; p. 135. [Google Scholar]
Sample | DGS (g)/H2O (mL) (a) | Starch (g)/H2O (mL) | Total H2O (mL) | Si/Starch/H2O mmol/g/g | |
---|---|---|---|---|---|
1 | SS-20-1-10 | 0.41/0.5 | 0.10/0.5 | 1.0 | 2/0.10/1.0 |
2 | SS-20-1.25-10 | 0.41/0.5 | 0.125/0.5 | 1.0 | 2/0.125/1.0 |
3 | SS-20-1.75-10 | 0.41/0.5 | 0.175/0.5 | 1.0 | 2/0.175/1.0 |
4 | SS-20-2-15 | 0.41/0.5 | 0.20/1.0 | 1.5 | 2/0.20/1.5 |
5 | SS-20-3-15 | 0.41/0.5 | 0.30/1.0 | 1.5 | 2/0.30/1.5 |
6 | SS-20-3.5-15 | 0.41/0.5 | 0.35/1.0 | 1.5 | 2/0.35/1.5 |
7 | SS-20-4-15 | 0.41/0.5 | 0.40/1.0 | 1.5 | 2/0.40/1.5 |
Worm | formulations | ||||
W1 (a) | SS-20-1.5-10 | 0.41/0.5 | 0.15/0.5 | 1.0 | 2/0.15/1.0 |
W2 (a) | SS-20-2-10 | 0.41/0.5 | 0.20/0.5 | 1.0 | 2/0.2/1.0 |
Sample after 1st Enzyme Digestion | Surface Area (m2 g−1) | Total Pore Volume (cc g−1) | Average Pore Diameter (Å) |
---|---|---|---|
1 | 519.3 ±11.2 | 1.616 ±0.13 | 124.5 |
2 | 412.3 ± 10.1 | 1.105 ± 0.10 | 107.2 |
3 | 405.0 ± 7.9 | 1.084 ± 0.11 | 107.0 |
4 | 412.3 ± 12.5 | 0.8432 ± 0.1 | 81.80 |
5 | 397.8 ± 7.1 | 0.7420 ± 0.08 | 74.60 |
6 | 358.9 ± 10.2 | 0.7794 ± 0.08 | 86.86 |
7 | 348.0 | 0.8079 | 92.86 |
W1 | 539.1 ± 10.2 | 1.602 ± 0.12 | 118.86 |
W2 | 498.2 | 1.658 | 133.12 |
Sample (after calcination at 600 °C) | Surface area (m2/g) | Total pore volume (cc/g) | Average pore diameter (Å) |
1 | 551.0 ± 11.1 | 1.575 ± 0.12 | 114.3 |
2 | 655.2 | 1.562 | 95.34 |
3 | 614.0 | 1.497 | 97.51 |
4 | 556.3 | 1.065 | 76.58 |
5 | 612.5 | 1.012 | 66.10 |
6 | 539.8 ± 10.5 | 0.3298 ± 0.02 | 24.44 |
7 | 730.5 | 0.4474 | 24.49 |
W1 | 701.2 | 1.695 | 96.69 |
W2 | 641.1 | 1.577 | 98.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Brook, M.A. Starch-Directed Synthesis of Worm-Shaped Silica Microtubes. Materials 2023, 16, 2831. https://doi.org/10.3390/ma16072831
Chen Y, Brook MA. Starch-Directed Synthesis of Worm-Shaped Silica Microtubes. Materials. 2023; 16(7):2831. https://doi.org/10.3390/ma16072831
Chicago/Turabian StyleChen, Yang, and Michael A. Brook. 2023. "Starch-Directed Synthesis of Worm-Shaped Silica Microtubes" Materials 16, no. 7: 2831. https://doi.org/10.3390/ma16072831
APA StyleChen, Y., & Brook, M. A. (2023). Starch-Directed Synthesis of Worm-Shaped Silica Microtubes. Materials, 16(7), 2831. https://doi.org/10.3390/ma16072831