An Improvement of Mechanical Properties of Two Kinds of Silicone Resins Containing Ladder Segments by Chemical Modification with Trimethylborate
Abstract
:1. Introduction
2. Experimental Part
2.1. Postmodification Procedure
2.2. Method of Determination of Si-OH Groups in Silicone Resins
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Witucki, G.L. Polysiloxane Hybrid Coatings. In Protective Organic Coatings; Tator, K.B., Ed.; ASM International: Novelty, OH, USA, 2015; Chapter 5. [Google Scholar] [CrossRef]
- Hellio, C.; Yebra, D. (Eds.) Advances in Marine Antifouling Coatings and Technologies; Woodhead Publishing: Sawston, UK, 2009. [Google Scholar]
- Zuev, V.V.; Smirnova, G.S.; Nikonorova, N.A.; Borisova, T.I.; Skorokhodov, S.S. Chemical modification of polymer main chain—A new path to liquid-crystalline polyesters with long siloxane segments. Significance of molecular mobility in the formation of the liquid-crystalline state. Makromol. Chem. 1991, 191, 2865–2870. [Google Scholar] [CrossRef]
- Muzafarov, A.M. (Ed.) Silicon Polymers; Springer: Berlin/Heidelberg, Germany, 2011; Volume 235. [Google Scholar]
- Marciniec, B. (Ed.) Hydrosilylation: A Comprehensive Review on Recent Advances; Advances in Silicon Science; Springer Science: Berlin, Germany, 2009. [Google Scholar] [CrossRef]
- Troegel, D.; Stohrer, J. Recent Advances and Actual Challenges in Late Transition Metal Catalyzed Hydrosilylation of Olefins from an Industrial Point of View. Coord. Chem. Rev. 2011, 255, 1440–1459. [Google Scholar] [CrossRef]
- Zuev, V.V. Polymer Nanocomposites Containing Fullerene C60 Nanofillers. Macromol. Symp. 2011, 301, 157–161. [Google Scholar] [CrossRef]
- Ostanin, S.A.; Kalinin, A.V.; Bratsyhin, Y.Y.; Saprykina, N.N.; Zuev, V.V. Linear/Ladder-like Polysiloxane Block Copolymers with Methyl-, Trifluoropropyl- and Phenyl-Siloxane Units for SurfaceModification. Polymers 2021, 13, 2063. [Google Scholar] [CrossRef] [PubMed]
- Collum, D.B.; Chen, S.; Ganem, B. A new synthesis of amides and macrocyclic lactams. J. Org. Chem. 1978, 43, 4393–4394. [Google Scholar] [CrossRef]
- Maki, T.; Ishihara, K.; Yamamoto, Y. 4,5,6,7-Tetrachlorobenzo[d][1,3,2]dioxaborol-2-ol as an Effective Catalyst for the Amide Condensation of Sterically Demanding Carboxylic Acids. Org. Lett. 2006, 8, 1431–1434. [Google Scholar] [CrossRef] [PubMed]
- Charville, H.; Jackson, D.; George Hodges, G.; Whiting, A. The thermal and boron-catalysed direct amide formation reactions: Mechanistically understudied yet important processes. Chem. Commun. 2010, 46, 1813–1823. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lavigne, J.J. Boronic acids in material chemistry. In Boronic Acids: Preparation and Applications in Organic Synthesis, Medicine and Materials, 1&2, 2nd ed.; Yall, D.G., Ed.; Wiley: Hoboken, NJ, USA, 2011; Chapter 14. [Google Scholar] [CrossRef]
- Wang, Z. Zerewitinoff Determination. In Comprehensive Organic Name Reactions and Reagents; Wiley: Hoboken, NJ, USA, 2010; Chapter 2; pp. 3129–3133. [Google Scholar] [CrossRef]
- Uhlig, F. 29Si NMR Spectroscopy. In Organosilicon Compounds; Academic Press: Cambridge, MA, USA, 2017; pp. 59–77. [Google Scholar] [CrossRef]
- Lewiński, J.; Kubicki, D. NMR Spectroscopy, Heteronuclei, B, Al, Ga, In, Tl. In Encyclopedia of Spectroscopy and Spectrometry, 3rd ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 318–329. [Google Scholar] [CrossRef]
- Tsvetkov, V.N.; Tsvetkov, N.V.; Zuev, V.V.; Didenko, S.A. The effect of the length of flexible chain fragments on electrooptical properties of mesophase formed by chain molecules. Vysokomol. Soed. Ser. A B 1995, 37, 1255–1264. [Google Scholar]
- Ostanin, S.A.; Mokeev, M.V.; Zuev, V.V. Influence of Interpenetrating Chains on Rigid Domain Dimensions in Siloxane-Based Block-Copolymers. Polymers 2022, 14, 4048. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, H. (Ed.) Lewis Acids in Organic Synthesis; Wiley-VCH: Weinheim, Germany, 2000; ISBN 978-3527295791. [Google Scholar]
- Gao, H.; Battley, A.; Leitao, E.M. The ultimate Lewis acid catalyst: Using tris(pentafluorophenyl) borane to create bespoke siloxane architectures. Chem. Commun. 2022, 58, 7451. [Google Scholar] [CrossRef] [PubMed]
- Vogel, P.; Lam, Y.; Simon, A.; Houk, K.N. Organocatalysis: Fundamentals and Comparisons to Metal and Enzyme. Catalysts 2016, 6, 128. [Google Scholar] [CrossRef] [Green Version]
- Mokeev, M.V.; Ostanin, S.A.; Zuev, V.V. Prototropic behavior of cyclohexane substituted urethane and urea compounds. Observation of H-bond mediated 4HJH1H3 coupling constants across urea fragments. Tetrahedron 2019, 75, 130691. [Google Scholar] [CrossRef]
- Dharmaratne, N.U.; Pothupitiya, J.U.; Bannin, T.J.; Kazakov, O.I.; Kiesewetter, M.K. Triclocarban: Commercial Antibacterial and Highly Effective H-Bond Donating Catalyst for Ring-Opening Polymerization. ACS Macro Lett. 2017, 6, 421–425. [Google Scholar] [CrossRef] [PubMed]
- Fastnacht, K.V.; Spink, S.S.; Dharmaratne, N.U.; Pothupitiya, J.U.; Datta, P.P.; Kiesewetter, E.T.; Kiesewetter, M.K. Bis-and Tris-Urea H-Bond Donors for Ring-Opening Polymerization: Unprecedented Activity and Control from an Organocatalyst. ACS Macro Lett. 2016, 5, 982–986. [Google Scholar] [CrossRef] [PubMed]
- Pothupitiya, J.U.; Hewawasam, R.S.; Kiesewetter, M.K. Urea and Thiourea H-Bond Donating Catalysts for Ring-Opening Polymerization: Mechanistic Insights via (Non)linear Free Energy Relationships. Macromolecules 2018, 51, 3203–3211. [Google Scholar] [CrossRef]
- Lin, B.; Waymouth, R.M. Urea Anions: Simple, Fast, and Selective Catalysts for Ring-Opening Polymerizations. J. Am. Chem. Soc. 2017, 139, 1645–1652. [Google Scholar] [CrossRef] [PubMed]
- Auvil, T.J.; Schafer, A.G.; Mattson, A.E. Design Strategies for Enhanced Hydrogen-Bond Donor Catalysts. Eur. J. Org. Chem. 2014, 2014, 2633–2646. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinin, A.V.; Zuev, V.V. An Improvement of Mechanical Properties of Two Kinds of Silicone Resins Containing Ladder Segments by Chemical Modification with Trimethylborate. Materials 2023, 16, 3072. https://doi.org/10.3390/ma16083072
Kalinin AV, Zuev VV. An Improvement of Mechanical Properties of Two Kinds of Silicone Resins Containing Ladder Segments by Chemical Modification with Trimethylborate. Materials. 2023; 16(8):3072. https://doi.org/10.3390/ma16083072
Chicago/Turabian StyleKalinin, Alexei V., and Vjacheslav V. Zuev. 2023. "An Improvement of Mechanical Properties of Two Kinds of Silicone Resins Containing Ladder Segments by Chemical Modification with Trimethylborate" Materials 16, no. 8: 3072. https://doi.org/10.3390/ma16083072
APA StyleKalinin, A. V., & Zuev, V. V. (2023). An Improvement of Mechanical Properties of Two Kinds of Silicone Resins Containing Ladder Segments by Chemical Modification with Trimethylborate. Materials, 16(8), 3072. https://doi.org/10.3390/ma16083072