Evaluation of Bitumen Modification Using a Fast-Reacting SBS Polymer at a Low Modifier Percentage
Abstract
:1. Introduction
- PE dosage content ranges, with recommended modifier dosage from 3 to 6%,
- mixing temperature ranges, with recommended temperature from 160 to 185 °C,
- recommended mixing speed of 1300–5000 rpm,
- mixing duration ranging from 30 to 60 min.
- penetration test,
- softening point test (ring and ball),
- ductility test.
- common road bitumen CA 50/70 without modification,
- modified road bitumen CA 50/70 with 3% SBS modification,
- modified road bitumen CA 10/40–65 with standard PMB modification from batching plant.
- complex modulus (E),
- fatigue measurement (ε6).
2. Materials and Methods
- The in labo findings were translated into pavement performance models of pavements without and with low amounts of fast-reacting SBS polymer and standard polymer modification.
- Computer simulation was performed in the Highway Design and Management tool (HDM-4). One lane road section was created and subjected to simulated climatic and traffic loading.
- Pavement performance models created in Step 1 were used to model the life cycle of the road section, and life cycle analysis was performed. Life cycle analysis was performed for all three pavement types.
- Life cycle cost analysis was performed for all three life cycles ascertaining construction cost and monetizing road user cost.
- Conclusions were drawn to evaluate the economic viability of modification with low amounts of fast-reacting SBS polymer technology.
2.1. Basic Properties of Bitumen and Modifier
2.2. Properties of Asphalt Mixture
- −
- binder course with max. grain 16 mm in the range to target a density of 2456 kg/m3:
- mixture with straight run bitumen CA 50/70
- mixture with modified bitumen 10/40–65
- mixture with additionally modified bitumen CA 50/70 with 3% fast-reacting polymer
- −
- surface course with grain line corresponding to AC11, to target a density 2422 kg/m3:
- mixture with straight run bitumen CA 50/70
- mixture with modified bitumen 10/40–65
- mixture with additionally modified bitumen CA 50/70 with 3% fast-reacting polymer
- −
- surface course layer with grain line corresponding to SMA, to target a density of 2391 kg/m3:
- mixture with modified bitumen 10/40–65
- mixture with additionally modified bitumen CA 50/70 with 3% fast-reacting polymer
3. Results
3.1. Rheology Properties of Different Mixtures
3.2. Service Life of Pavement Based on Different Fatigue Parameters of Asphalt Mixtures
3.3. Service Life of Pavement Based on Different Fatigue Parameters of Asphalt Mixtures
3.4. Pavement Performance and Life Cycle Analysis
3.5. Life Cycle Cost Analysis
3.5.1. Capital Construction Costs
3.5.2. Road User Costs
- Travel time costs—passenger, crew, and cargo travel time. These are directly proportional to travel speed on the evaluated road section.
- Vehicle operating costs—fuel, oil, spare parts, maintenance, tire wear, interest, and depreciation costs of a vehicle. These are highly dependable on pavement serviceability in addition to travel speed.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Committee for Standardization (Cen): EN 13285; Bitumen and Bituminous Binders—Terminology. European Committee: Brussels, Belgium, 2000.
- European Committee for Standardization (Cen): EN 13285; Road Construction Materials: Unbound mixtures—Specifications. European Committee: Brussels, Belgium, 2018.
- Holý, M.; Remišová, E. Analysis of influence of bitumen composition on the properties represented by empirical and viscosity test. Transp. Res. Procedia 2019, 40, 34–41. [Google Scholar] [CrossRef]
- Zou, G.; Zhuo, R.; Sun, X.; Luo, J. Effects of crude oil on the performances of hard asphalt and its mixtures. Int. J. Pavement Eng. 2020, 23, 1584–1593. [Google Scholar] [CrossRef]
- Alvarez, A.E.; Ovalles, E.; Reyes-Ortiz, O.J. Mixture design and performance characterization of asphalt mixtures prepared using paving-heavy crude oils for low-traffic volume roads. Constr. Build. Mater. 2022, 329, 127141. [Google Scholar] [CrossRef]
- Hunter, R.N.; Self, A.; Read, J. The Shell Bitumen Handbook Extbook of Organic Chemistry, 6th ed.; ICE Publishing One Great George Street: Westminster, UK, 2015; ISBN 978-0-7277-5837-8. [Google Scholar] [CrossRef]
- Remišová, E.; Zatkalíková, V. Evaluation of Bituminous Binder in Relation to Resistance to Permanent Deformation. Procedia Eng. 2016, 153, 584–589. [Google Scholar] [CrossRef] [Green Version]
- González, O.; Peña, J.J.; Muñoz, M.E.; Santamaría, A.; Pérez-Lepe, A.; Martínez-Boza, F.; Gallegos, C.J.E. Rheological techniques as a tool to analyze polymer-bitumen interactions: Bitumen modified with polyethylene and polyethylene-based blends. Energy Fuels 2002, 16, 1256–1263. [Google Scholar] [CrossRef]
- Sulyman, M. New Study on Improved Performance of Paving Asphalts by Crumb Rubber and Polyethylene Modification. J. Mater. Sci. Eng. 2013, 2, 1–9. [Google Scholar] [CrossRef]
- Kakar, M.R.; Mikhailenko, P.; Piao, Z.; Bueno, M.; Poulikakos, L. Analysis of waste polyethylene (PE) and its by-products in asphalt binder. Constr. Build. Mater. 2021, 280, 122492. [Google Scholar] [CrossRef]
- Mazurek, G.; Podsiadło, M. Optimisation of Polymer Addition Using the Plackett-Burman Experiment Plan. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1203, 022003. [Google Scholar] [CrossRef]
- Masad, E.; Roja, K.L.; Rehman, A.; Abdala, A. A Review of Asphalt Modification Using Plastics: A Focus on Polyethylene; Texas A&M University: Doha, Qatar, 2020. [Google Scholar] [CrossRef]
- Li, M.; Chen, X.; Cong, P.; Luo, C.; Zhu, L.; Li, H.; Zhang, Y.; Chao, M.; Yan, L. Facile synthesis of polyethylene-modified asphalt by chain end-functionalization. Compos. Commun. 2022, 30, 101088. [Google Scholar] [CrossRef]
- Mazurek, G.; Šrámek, J.; Buczyński, P. Composition Optimisation of Selected Waste Polymer-Modified Bitumen. Materials 2022, 15, 8714. [Google Scholar] [CrossRef]
- Vargas, M.A.; Vargas, M.A.; Sánchez-Sólis, A.; Manero, O. Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling. Construct. Build. Mater. 2013, 45, 243–250. [Google Scholar] [CrossRef]
- Hamedi, G.H.; Azarhoosh, A.R.; Khodadadi, M. Effects of Asphalt Binder Modifying with Polypropylene on Moisture Susceptibility of Asphalt Mixtures with Thermodynamically Concepts. Period. Polytech. Civ. Eng. 2018, 62, 901–910. [Google Scholar] [CrossRef]
- Yosevina, Y. Pengaruh Penggunaan Aspal Modifikasi Polimer Ethyl Vinyl Acetat (EVA) Terhadap Campuran Laston Asphalt Concrete Wearing Course (AC-WC). Media Ilm. Tek. Sipil 2022, 10, 95–104. [Google Scholar] [CrossRef]
- Lu, X.; Isacsson, U.; Ekblad, J. Rheological properties of SEBS, EVA and EBA polymer modified bitumens. Mat. Struct. 1999, 32, 131–139. [Google Scholar] [CrossRef]
- Behnood, A.; Gharehveran, M. Morphology, rheology and physical properties of polymer-modified asphalt binders. Eur. Polym. J. 2019, 112, 766–791. [Google Scholar] [CrossRef]
- González, O.; Muñoz, M.E.; Santamaría, A. Bitumen/polyethylene blends: Using m-LLDPEs to improve stability and viscoelastic properties. Rheol. Acta 2006, 45, 603–610. [Google Scholar] [CrossRef]
- Padhan, R.K.; Leng, Z.; Sreeram, A.; Xu, X. Compound modification of asphalt with styrene-butadiene-styrene and waste polyethylene terephthalate functionalized additives. J. Clean. Prod. 2020, 277, 124286. [Google Scholar] [CrossRef]
- Kok, B.V.; Yalcin, B.F.; Yilmaz, M.; Yalcin, E. Performance evaluation of bitumen modified with styrene–isoprene-styrene and crumb rubber compound. Constr. Build. Mater. 2022, 344, 128304. [Google Scholar] [CrossRef]
- Zapién-Castillo, S.; Rivera-Armenta, J.L.; Chávez-Cinco, M.Y.; Salazar-Cruz, B.A.; Mendoza-Martínez, A.M. Physical and rheological properties of asphalt modified with SEBS/montmorillonite nanocomposite. Constr. Build. Mater. 2016, 106, 349–356. [Google Scholar] [CrossRef]
- Liang, M.; Ren, S.; Fan, W.; Xin, X. Storage stability and its relationship with microstructure of SBS modified de-oiled asphalt. In Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering, Wuhan, China, 15–16 October 2016. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Xie, L.; Dou, D.; Li, L.; Yu, M.; Yao, S. Storage stability and compatibility of asphalt binder modified by SBS graft copolymer. Constr. Build. Mater. 2007, 21, 1528–1533. [Google Scholar] [CrossRef]
- Singh, S.; Kumar, Y.; Ravindranath, S.R. Thermal degradation of SBS in bitumen during storage: Influence of temperature, SBS concentration, polymer type and base bitumen. Polym. Degrad. Stab. 2018, 147, 64–75. [Google Scholar] [CrossRef]
- Zgútová, K.; Decky, M.; Dureková, D. Implementation of static theory of impulse into correlation relations of relevant deformation characteristics of earth construction. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM 4, Albena, Bulgaria, 17–23 June 2012; pp. 107–115. Available online: https://www.proquest.com/docview/1444046823/C6103B5F9F894C4CPQ/1?accountid=49401 (accessed on 10 March 2023). [CrossRef]
- Florková, Z.; Šedivý, Š.; Pepucha, Ľ. Analysis of results of the aggregate microtexture evaluation by volumetric characteristics. MATEC Web Conf. 2017, 117, 00046. [Google Scholar] [CrossRef] [Green Version]
- Remišová, E.; Decký, M.; Mikolaš, M.; Hájek, M.; Kovalčík, L.; Mečár, M. Design of road pavement using recycled aggregate. IOP Conf. Ser. Earth Environ. Sci. 2016, 44, 022016. [Google Scholar] [CrossRef] [Green Version]
- European Committee for Standardization (CEN): EN 1426; Bitumen and Bituminous Binders. Determination of Needle Penetration. European Committee: Brussels, Belgium, 2015.
- European Committee for Standardization (CEN): EN 1427; Bitumen and Bituminous Binders. Determination of the Softening Point—Ring and Ball Method. European Committee: Brussels, Belgium, 2015.
- European Committee for Standardization (CEN): EN 13398; Bitumen and Bituminous Binders. Determination of the Elastic Recovery of Modified Bitumen. European Committee: Brussels, Belgium, 2018.
- European Committee for Standardization (CEN): EN 12697-2; Bituminous Mixtures. Test Methods Determination of Particle Size Distribution. European Committee: Brussels, Belgium, 2019.
- Sramek, J. Stiffness and Fatigue of Asphalt Mixtures for Pavement Construction. Slovak J. Civ. Eng. 2018, 26, 24–29. [Google Scholar] [CrossRef] [Green Version]
- Schlosser, F.; Mikolaj, J.; Zatkaliakova, V.; Sramek, J.; Durekova, D.; Remek, Ľ. Deformation Properties and Fatigue of Bituminous Mixtures. Adv. Mater. Sci. Eng. 2013, 2013, 701764. [Google Scholar] [CrossRef] [Green Version]
- Schlosser, F.; Sramekova, E.; Sramek, J. Rheology, Deformational Properties and Fatigue of the Asphalt Mixtures. Adv. Mater. Res. 2014, 875–877, 578–583. [Google Scholar] [CrossRef]
- European Committee for Standardization (CEN): EN 12697-24; Bituminous Mixtures. Test Methods for Hot Mix Asphalt—Part 24: Resistance to Fatigue. European Committee: Brussels, Belgium, 2018.
- European Committee for Standardization (CEN): EN 12697-26; Bituminous Mixtures. Test Methods for Hot Mix Asphalt—Part 26: Stiffness. European Committee: Brussels, Belgium, 2018.
- Mikolaj, J.; Remek, Ľ.; Kozel, M. Road Asset Value Calculation Based on Asset Performance, Community Benefits and Technical Condition. Sustainability 2022, 14, 4375. [Google Scholar] [CrossRef]
- Mikolaj, J.; Remek, Ľ.; Kozel, M. Optimization of Bituminous Road Surfacing Rehabilitations Based on Optimization of Road Asset Value. Appl. Sci. 2022, 12, 10466. [Google Scholar] [CrossRef]
- Kozel, M.; Remek, Ľ.; Ďurínová, M.; Šedivý, Š.; Šrámek, J.; Danišovič, P.; Hostačná, V. Economic Impact Analysis of the Application of Different Pavement Performance Models on First-Class Roads with Selected Repair Technology. Appl. Sci. 2021, 11, 10409. [Google Scholar] [CrossRef]
- Ministerstvo Dopravy České Republiky. Navrhování Vozovek Pozemích Komunikací, TP107. 2006. Available online: https://pjpk.rsd.cz/data/USR_001_2_8_TP/TP_170_upraveny_dotisk.pdf (accessed on 4 March 2023).
- Odoki, J.B.; Kerali, H.G.R. Analytical Framework and Model Description; The Highway Development and Management Series; Association Mondiale de la Route—World Road Association: La Défense, France, 2023; Volume 4, ISBN 2-84060-102-8. [Google Scholar]
- World Road Association—PIARC. HDM-4 Software. Available online: https://www.piarc.org/en/PIARC-knowledge-base-Roads-and-Road-Transportation/Road-Safety-Sustainability/Road-Assets-Management/HDM-4-Software(accessed on 3 February 2023).
Modifier Concentration (%) | CA 35/50 | CA 50/70 | ||||
---|---|---|---|---|---|---|
Penetration (0.1 mm) | Softening Point (°C) | Ductility (%) | Penetration (0.1 mm) | Softening Point (°C) | Ductility (%) | |
0% | 4.75 | 53.65 | 16% | 6.74 | 49.65 | 12% |
2% | 5.34 | 57.05 | 48.75% | 6.02 | 50.30 | 17% |
2.50% | 5.09 | 57.45 | 49.38% | 5.76 | 50.50 | 23% |
3.00% | 4.83 | 57.55 | 51.02% | 5.50 | 50.60 | 25% |
3.50% | 4.23 | 57.6 | 54.19% | 4.79 | 50.40 | 29% |
Type of Mixture | Fatigue Parameter | |||
---|---|---|---|---|
A0 | B | b | ε6 | |
AC16 CA 10/40–65 | −17.7948 | −6.0690 | −0.1648 | 120.04 |
AC16 CA 50/70 with 3% SBS | −13.2967 | −4.8649 | −0.2056 | 108.02 |
AC16 CA 50/70 | −26.9604 | −8.1672 | −0.1224 | 92.11 |
AC11 10/40–65 | −37.3393 | −11.1276 | −0.0899 | 127.42 |
AC11 CA 50/70 with 3% SBS | −45.5806 | −13.1257 | −0.0762 | 117.56 |
AC11 CA 50/70 | −11.4420 | −4.3207 | −0.2314 | 91.87 |
SMA 10/40–65 | −27.4132 | −9.0475 | −0.1105 | 202.74 |
SMA CA 50/70 with 3% SBS | −35.1848 | −10.4662 | −0.0955 | 116.14 |
Layer | Complex Modulus | Poisson Number | Layer Thickness | ||
---|---|---|---|---|---|
CA 50/70 | CA 50/70 with 3% SBS | CA 10/40–65 | |||
Surface course | 7578 | 0.33 | 40 mm | ||
Binder course | 10,504 | 693 | 7028 | 0.33 | 80 mm |
Mechanically bound aggregate | 587 | 0.30 | 180 mm | ||
Gravel sub-base | 366 | 0.30 | 200 mm | ||
Sub-grade | 100 | 0.35 | - |
Asphalt Type of Binder Course | CA 50/70 | CA 50/70 with 3% SBS | CA 10/40–65 |
---|---|---|---|
Total number of DAL | 1.5 × 106 | 3.4 × 106 | 5.7 × 106 |
Moisture classification | Semi-arid | Mean temperature | 9.5 °C |
Moisture index | −36 | Avg. temperature range | 20.2 °C |
Duration of dry season | 7.32 months | Days T > 32 °C | 19.5 days |
Mean monthly precipitation | 54.5 mm | Freeze index | 262 |
Van | Medium Lorry | Passanger Car | Heavy Bus | Articulated Truck | Heavy Lorry | Total | |
---|---|---|---|---|---|---|---|
AADT first year | 149 | 43 | 4526 | 28 | 185 | 18 | 4949 |
20-year total | 3450 | 986 | 104,655 | 657 | 4272 | 422 | 114,442 |
Binder Course Mixture | EUR/ton | EUR/m3 | EUR/m2 (80 mm Binder Course) | 1 km of 4.25 m Lane with 80 mm Binder Course |
---|---|---|---|---|
CA 50/70 | 94 | 263.20 | 21.06 | 89,488 |
CA 50/70 with 3% SBS polymer | 116 | 332.80 | 26.62 | 113,152 |
CA 10/40–65 | 120 | 336.00 | 26.88 | 114,240 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šrámek, J.; Kozel, M.; Remek, L.; Mikolaj, J. Evaluation of Bitumen Modification Using a Fast-Reacting SBS Polymer at a Low Modifier Percentage. Materials 2023, 16, 2942. https://doi.org/10.3390/ma16082942
Šrámek J, Kozel M, Remek L, Mikolaj J. Evaluation of Bitumen Modification Using a Fast-Reacting SBS Polymer at a Low Modifier Percentage. Materials. 2023; 16(8):2942. https://doi.org/10.3390/ma16082942
Chicago/Turabian StyleŠrámek, Juraj, Matúš Kozel, Luboš Remek, and Ján Mikolaj. 2023. "Evaluation of Bitumen Modification Using a Fast-Reacting SBS Polymer at a Low Modifier Percentage" Materials 16, no. 8: 2942. https://doi.org/10.3390/ma16082942
APA StyleŠrámek, J., Kozel, M., Remek, L., & Mikolaj, J. (2023). Evaluation of Bitumen Modification Using a Fast-Reacting SBS Polymer at a Low Modifier Percentage. Materials, 16(8), 2942. https://doi.org/10.3390/ma16082942