Thermal Conductivity of Aluminum Alloys—A Review
Abstract
:1. Introduction
2. Theories of Thermal Conductivity of Aluminum Alloys
2.1. Theory of Thermal Conduction of Metals
2.2. Effective Medium Theory for Thermal Conductivity of Aluminum Alloys
3. Factors Affecting the Thermal Conductivity of Aluminum Alloys
3.1. Alloying Elements
3.1.1. Species of Alloying Elements
3.1.2. Existing States of Alloying Elements
3.1.3. Mutual Interaction of Alloying Elements
3.2. Secondary Phases
3.2.1. Thermal Conductivity of Secondary Phases
3.2.2. Morphology of Secondary Phases
3.3. Temperature
4. The Effect of Processes on the Thermal Conductivity of Aluminum Alloys
4.1. Casting Process
4.2. Heat Treatment
4.2.1. Solution Treatment
4.2.2. Aging Treatment
4.2.3. Annealing Treatment
4.3. Additive Manufacturing
5. Conclusions and Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mondolfo, L.F. Aluminum Alloys: Structure and Properties; Butterworths: London, UK, 1976. [Google Scholar]
- Davis, J.R. Aluminum and Aluminum Alloys; ASM international: Materials Park, OH, USA, 2001. [Google Scholar]
- Lombardi, A.; D’Elia, F.; Ravindran, C.; Mackay, R. Replication of Engine Block Cylinder Bridge Microstructure and Mechanical Properties with Lab Scale 319 Al Alloy Billet Castings. Mater. Charact. 2014, 87, 125–137. [Google Scholar] [CrossRef]
- Hatch, J.E. Aluminum: Properties and Physical Metallurgy; ASM international: Metals Park, OH, USA, 1984. [Google Scholar]
- Lumley, R. Fundamentals of Aluminium Metallurgy: Production, Processing and Applications; Woodhead Publishing: Oxford, UK, 2011. [Google Scholar]
- Emadi, P.; Andilab, B.; Ravindran, C. Engineering Lightweight Aluminum and Magnesium Alloys for a Sustainable Future. J. Indian Inst. Sci. 2022, 102, 405–420. [Google Scholar] [CrossRef]
- Hirsch, J. Recent Development in Aluminium for Automotive Applications. Trans. Nonferrous Met. Soc. China 2014, 24, 1995–2002. [Google Scholar] [CrossRef]
- Gan, J.Q.; Huang, Y.J.; Wen, C.; Du, J. Effect of Sr Modification on Microstructure and Thermal Conductivity of Hypoeutectic Al−Si Alloys. Trans. Nonferrous Met. Soc. China 2020, 30, 2879–2890. [Google Scholar] [CrossRef]
- Vandersluis, E.; Lombardi, A.; Ravindran, C.; Bois-Brochu, A.; Chiesa, F.; MacKay, R. Factors Influencing Thermal Conductivity and Mechanical Properties in 319 Al Alloy Cylinder Heads. Mater. Sci. Eng. A 2015, 648, 401–411. [Google Scholar] [CrossRef]
- Perner, A.; Vetter, J. Lithium-Ion Batteries for Hybrid Electric Vehicles and Battery Electric Vehicles. In Advances in Battery Technologies for Electric Vehicles; Woodhead Publishing: Cambridge, UK, 2015; pp. 173–190. [Google Scholar] [CrossRef]
- Hernandez, F.C.R.; Ramírez, J.M.H.; Mackay, R. Al-Si Alloys: Automotive, Aeronautical, and Aerospace Applications; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Karabay, S. Modification of AA-6201 Alloy for Manufacturing of High Conductivity and Extra High Conductivity Wires with Property of High Tensile Stress after Artificial Aging Heat Treatment for All-Aluminium Alloy Conductors. Mater. Des. 2006, 27, 821–832. [Google Scholar] [CrossRef]
- Irfan, M.A.; Schwam, D.; Karve, A.; Ryder, R. Porosity Reduction and Mechanical Properties Improvement in Die Cast Engine Blocks. Mater. Sci. Eng. A 2012, 535, 108–114. [Google Scholar] [CrossRef]
- Tavitas-Medrano, F.J.; Gruzleski, J.E.; Samuel, F.H.; Valtierra, S.; Doty, H.W. Effect of Mg and Sr-Modification on the Mechanical Properties of 319-Type Aluminum Cast Alloys Subjected to Artificial Aging. Mater. Sci. Eng. A 2008, 480, 356–364. [Google Scholar] [CrossRef]
- Okayasu, M.; Ohkura, Y.; Takeuchi, S.; Takasu, S.; Ohfuji, H.; Shiraishi, T. A Study of the Mechanical Properties of an Al-Si-Cu Alloy (ADC12) Produced by Various Casting Processes. Mater. Sci. Eng. A 2012, 543, 185–192. [Google Scholar] [CrossRef]
- Wang, E.R.; Hui, X.D.; Wang, S.S.; Zhao, Y.F.; Chen, G.L. Improved Mechanical Properties in Cast Al–Si Alloys by Combined Alloying of Fe and Cu. Mater. Sci. Eng. A 2010, 527, 7878–7884. [Google Scholar] [CrossRef]
- Guo, F.B.; Zhu, B.H.; Jin, L.B.; Wang, G.J.; Yan, H.W.; Li, Z.H.; Zhang, Y.A.; Xiong, B.Q. Microstructure and Mechanical Properties of 7A56 Aluminum Alloy after Solution Treatment. Rare Met. 2021, 40, 168–175. [Google Scholar] [CrossRef]
- Li, J.H.; Li, F.G.; Wang, W.J.; Ma, X.K.; Li, J. Achieving Grain Refinement and Related Mechanical Property Improvement of an Al-Zn-Mg-Cu Alloy Through Severe Plastic Deformation. J. Mater. Eng. Perform. 2018, 27, 6690–6700. [Google Scholar] [CrossRef]
- Wu, J.X.; Ebrahimi, M.; Attarilar, S.; Gode, C.; Zadshakoyan, M. Cyclic Extrusion Compression Process for Achieving Ultrafine-Grained 5052 Aluminum Alloy with Eminent Strength and Wear Resistance. Metals 2022, 12, 1627. [Google Scholar] [CrossRef]
- Wu, J.X.; Djavanroodi, F.; Shamsborhan, M.; Attarilar, S.; Ebrahimi, M. Improving Mechanical and Corrosion Behavior of 5052 Aluminum Alloy Processed by Cyclic Extrusion Compression. Metals 2022, 12, 1288. [Google Scholar] [CrossRef]
- Guo, K.; Gou, G.Q.; Lv, H.; Shan, M.L. Jointing of CFRP/5083 Aluminum Alloy by Induction Brazing: Processing, Connecting Mechanism, and Fatigue Performance. Coatings 2022, 12, 1559. [Google Scholar] [CrossRef]
- Lasagni, F.; Lasagni, A.; Marks, E.; Holzapfel, C.; Mucklich, F.; Degischer, H.P. Three-Dimensional Characterization of ‘as-Cast’ and Solution-Treated AlSi12(Sr) Alloys by High-Resolution FIB Tomography. Acta Mater. 2007, 55, 3875–3882. [Google Scholar] [CrossRef]
- Madelung, O.; Klemens, P.G. Thermal Conductivity of Pure Metals and Alloys; Springer: Berlin, Germany, 1991. [Google Scholar]
- Ziman, J.M. Electrons and Phonons: The Theory of Transport Phenomena in Solids; Oxford University Press: New York, NY, USA, 2001. [Google Scholar]
- Wang, J.F.; Carson, J.K.; North, M.F.; Cleland, D.J. A New Approach to Modelling the Effective Thermal Conductivity of Heterogeneous Materials. Int. J. Heat Mass Transf. 2006, 49, 3075–3083. [Google Scholar] [CrossRef]
- Zhai, S.; Zhang, P.; Xian, Y.; Zeng, J.; Shi, B. Effective Thermal Conductivity of Polymer Composites: Theoretical Models and Simulation Models. Int. J. Heat Mass Transf. 2018, 117, 358–374. [Google Scholar] [CrossRef]
- Zhang, L.; Xiong, D.J.; Su, Z.L.; Li, J.F.; Yin, L.M.; Yao, Z.X.; Wang, G.; Zhang, L.P.; Zhang, H.H. Molecular Dynamics Simulation and Experimental Study of Tin Growth in SAC Lead-Free Microsolder Joints under Thermo-Mechanical-Electrical Coupling. Mater. Today Commun. 2022, 33, 104301. [Google Scholar] [CrossRef]
- Chen, L.Q.; Zhao, Y.H. From Classical Thermodynamics to Phase-Field Method. Prog. Mater. Sci. 2022, 124, 100868. [Google Scholar] [CrossRef]
- Chen, J.K.; Hung, H.Y.; Wang, C.F.; Tang, N.K. Effects of Casting and Heat Treatment Processes on the Thermal Conductivity of an Al-Si-Cu-Fe-Zn Alloy. Int. J. Heat Mass Transf. 2017, 105, 189–195. [Google Scholar] [CrossRef]
- Lumley, R.N.; Polmear, I.J.; Groot, H.; Ferrier, J. Thermal Characteristics of Heat-Treated Aluminum High-Pressure Die-Castings. Scr. Mater. 2008, 58, 1006–1009. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.Y.; Zhang, B.; Qin, F.C.; Hou, Y.F. Precipitation Behavior and Mechanical Properties of Al–Zn–Mg Alloy with High Zn Concentration. J. Alloys Compd. 2020, 825, 154005. [Google Scholar] [CrossRef]
- Lumley, R.N.; Deeva, N.; Larsen, R.; Gembarovic, J.; Freeman, J. The Role of Alloy Composition and T7 Heat Treatment in Enhancing Thermal Conductivity of Aluminum High Pressure Diecastings. Metall. Mater. Trans. A 2013, 44, 1074–1086. [Google Scholar] [CrossRef]
- Lumley, R.N.; O’Donnell, R.G.; Gunasegaram, D.R.; Givord, M. Heat Treatment of High-Pressure Die Castings. Metall. Mater. Trans. A 2007, 38, 2564–2574. [Google Scholar] [CrossRef]
- Lin, S.P.; Nie, Z.R.; Huang, H.; Li, B.L. Annealing Behavior of a Modified 5083 Aluminum Alloy. Mater. Des. 2010, 31, 1607–1612. [Google Scholar] [CrossRef]
- Pozdniakov, A.V.; Barkov, R.Y.; Prosviryakov, A.S.; Churyumov, A.Y.; Golovin, I.S.; Zolotorevskiy, V.S. Effect of Zr on the Microstructure, Recrystallization Behavior, Mechanical Properties and Electrical Conductivity of the Novel Al-Er-Y Alloy. J. Alloys Compd. 2018, 765, 1–6. [Google Scholar] [CrossRef]
- Choi, S.W.; Cho, H.S.; Kumai, S. Effect of the Precipitation of Secondary Phases on the Thermal Diffusivity and Thermal Conductivity of Al-4.5Cu Alloy. J. Alloys Compd. 2016, 688, 897–902. [Google Scholar] [CrossRef]
- Luo, G.; Zhou, X.; Li, C.B.; Du, J.; Huang, Z.H. A Quantitative Study on the Interaction Between Silicon Content and Heat Treatment on Thermal Conductivity of Al-Si Binary Alloys. Int. J. Met. 2022, 16, 1585–1594. [Google Scholar] [CrossRef]
- Bergman, T.L.; Lavine, A.S.; Incropera, F.P.; DeWitt, D.P. Introduction to Heat Transfer; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Ho, C.Y.; Powell, R.W.; Liley, P.E. Thermal Conductivity of the Elements. J. Phys. Chem. Ref. Data 1972, 1, 279–421. [Google Scholar] [CrossRef] [Green Version]
- Andrews, P.V.; West, M.B.; Robeson, C.R. The Effect of Grain Boundaries on the Electrical Resistivity of Polycrystalline Copper and Aluminium. Philos. Mag. 1969, 19, 887–898. [Google Scholar] [CrossRef]
- Sauvage, X.; Bobruk, E.V.; Murashkin, M.Y.; Nasedkina, Y.; Enikeev, N.A.; Valiev, R.Z. Optimization of Electrical Conductivity and Strength Combination by Structure Design at the Nanoscale in Al–Mg–Si Alloys. Acta Mater. 2015, 98, 355–366. [Google Scholar] [CrossRef]
- Miyajima, Y.; Komatsu, S.Y.; Mitsuhara, M.; Hata, S.; Nakashima, H.; Tsuji, N. Change in Electrical Resistivity of Commercial Purity Aluminium Severely Plastic Deformed. Philos. Mag. 2010, 90, 4475–4488. [Google Scholar] [CrossRef]
- Maeta, H. Temperature Dependence of Electrical Resistivity of Dislocation in Aluminum. J. Phys. Soc. Jpn. 1968, 24, 757–762. [Google Scholar] [CrossRef]
- Van Horn, K.R. Aluminum Properties, Physical Metallurgy, and Phase Diagrams; ASM international: Metals Park, OH, USA, 1967. [Google Scholar]
- Kutner, F.; Lang, G. Effect of Addition Elements and Heat-Treatment on the Specific Electrical Resistivity. Aluminium 1976, 52, 322–326. [Google Scholar]
- Schroder, K. Handbook of Electrical Resistivities of Binary Metallic Alloys; CRC Press: Boca Raton, FL, USA, 1983. [Google Scholar]
- Mujahid, M.; Engel, N.N.; Chia, E.H. Effect of Alloying Elements on the Conductivity of Aluminum Alloys. Scr. Metall. 1979, 13, 887–893. [Google Scholar] [CrossRef]
- Timpel, M.; Wanderka, N.; Murty, B.S.; Banhart, J. Three-Dimensional Visualization of the Microstructure Development of Sr-Modified Al–15Si Casting Alloy Using FIB-EsB Tomography. Acta Mater. 2010, 58, 6600–6608. [Google Scholar] [CrossRef]
- Helsing, J.; Grimvall, G. Thermal Conductivity of Cast Iron: Models and Analysis of Experiments. J. Appl. Phys. 1991, 70, 1198–1206. [Google Scholar] [CrossRef]
- Chen, J.K.; Hung, H.Y.; Wang, C.F.; Tang, N.K. Thermal and Electrical Conductivity in Al–Si/Cu/Fe/Mg Binary and Ternary Al Alloys. J. Mater. Sci. 2015, 50, 5630–5639. [Google Scholar] [CrossRef]
- Hamilton, R.L.; Crosser, O.K. Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fundam. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials. J. Appl. Phys. 1962, 33, 3125–3131. [Google Scholar] [CrossRef]
- Hashin, Z. Assessment of the Self Consistent Scheme Approximation: Conductivity of Particulate Composites. J. Compos. Mater. 1968, 2, 284–300. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, Y.L.; Zhong, G.; Zhang, J.C.; Chen, Y.N.; Jie, W.Q.; Schumacher, P.; Li, J.H. Effects of Si and Sr Elements on Solidification Microstructure and Thermal Conductivity of Al–Si-Based Alloys. J. Mater. Sci. 2022, 57, 6428–6444. [Google Scholar] [CrossRef] [PubMed]
- Stadler, F.; Antrekowitsch, H.; Fragner, W.; Kaufmann, H.; Pinatel, E.R.; Uggowitzer, P.J. The Effect of Main Alloying Elements on the Physical Properties of Al-Si Foundry Alloys. Mater. Sci. Eng. A 2013, 560, 481–491. [Google Scholar] [CrossRef]
- Xu, J.Z.; Gao, B.Z.; Kang, F.Y. A Reconstruction of Maxwell Model for Effective Thermal Conductivity of Composite Materials. Appl. Therm. Eng. 2016, 102, 972–979. [Google Scholar] [CrossRef]
- Wang, G.H.; Li, Y.X. Calculating the Effective Thermal Conductivity of Gray Cast Iron by Using an Interconnected Graphite Model. China Foundry 2020, 17, 183–189. [Google Scholar] [CrossRef]
- Ganapathy, D.; Singh, K.; Phelan, P.E. An Effective Unit Cell Approach to Compute the Thermal Conductivity of Composites with Cylindrical Particles. J. Heat Transf. 2005, 127, 553–559. [Google Scholar] [CrossRef]
- Qian, L.J.; Pang, X.M.; Zhou, J.Q.; Yang, J.X.; Lin, S.S.; Hui, D. Theoretical Model and Finite Element Simulation on the Effective Thermal Conductivity of Particulate Composite Materials. Compos. Part B-Eng. 2017, 116, 291–297. [Google Scholar] [CrossRef]
- Yu, B.M.; Li, B.M. Fractal-like Tree Networks Reducing the Thermal Conductivity. Phys. Rev. E 2006, 73, 066302. [Google Scholar] [CrossRef]
- Zhang, A.L.; Li, Y.X. Effect of Alloying Elements on Thermal Conductivity of Aluminum. J. Mater. Res. 2023, 1–10. [Google Scholar] [CrossRef]
- Kim, C.W.; Kim, Y.C.; Kim, J.H.; Cho, J.I.; Oh, M.S. Effect of Alloying Elements on the Thermal Conductivity and Casting Characteristics of Aluminum Alloys in High Pressure Die Casting. Korean J. Met. Mater. 2018, 56, 805–812. [Google Scholar] [CrossRef] [Green Version]
- Karamouz, M.; Azarbarmas, M.; Emamy, M.; Alipour, M. Microstructure, Hardness and Tensile Properties of A380 Aluminum Alloy with and without Li Additions. Mater. Sci. Eng. A 2013, 582, 409–414. [Google Scholar] [CrossRef]
- Aksoz, S.; Ocak, Y.; Maraslı, N.; Cadirli, E.; Kaya, H.; Boyuk, U. Dependency of the Thermal and Electrical Conductivity on the Temperature and Composition of Cu in the Al Based Al–Cu Alloys. Exp. Therm. Fluid Sci. 2010, 34, 1507–1516. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, C.Y.; Zhang, B.; Hou, Y.F.; Xu, Z.Z. Effects of Mg and Sc Additions on the Microstructure and Mechanical Properties of Al–20Zn Alloys. Mater. Charact. 2020, 159, 110000. [Google Scholar] [CrossRef]
- Zhang, B.B.; Liaw, P.K.; Brechtl, J.; Ren, J.L.; Guo, X.X.; Zhang, Y. Effects of Cu and Zn on Microstructures and Mechanical Behavior of the Medium-Entropy Aluminum Alloy. J. Alloys Compd. 2020, 820, 153092. [Google Scholar] [CrossRef]
- Mohanty, P.; Gruzleski, J.E. Grain Refinement Mechanisms of Hypoeutectic Al-Si Alloys. Acta Mater. 1996, 44, 3749–3760. [Google Scholar] [CrossRef]
- Han, Y.F.; Li, K.; Wang, J.; Shu, D.; Sun, B.D. Influence of High-Intensity Ultrasound on Grain Refining Performance of Al–5Ti–1B Master Alloy on Aluminium. Mater. Sci. Eng. A 2005, 405, 306–312. [Google Scholar] [CrossRef]
- Zhou, Y.L.; Zhang, X.; Zhong, G.; Zhang, J.C.; Yang, Y.; Kang, D.; Li, H.T.; Jie, W.Q.; Schumacher, P.; Li, J.H. Elucidating Thermal Conductivity Mechanism of Al-9Si Based Alloys with Trace Transition Elements (Mn, Cr, V). J. Alloys Compd. 2022, 907, 164446. [Google Scholar] [CrossRef]
- Setzer, W.C.; Boone, G.W. The use of aluminium boron master alloys to improve electrical conductivity. In Proceedings of the TMS Annual Meeting, San Diego, CA, USA, 1–5 March 1992. [Google Scholar]
- Choi, S.W.; Cho, H.S.; Kang, C.S.; Kumai, S. Precipitation Dependence of Thermal Properties for Al–Si–Mg–Cu–(Ti) Alloy with Various Heat Treatment. J. Alloys Compd. 2015, 647, 1091–1097. [Google Scholar] [CrossRef]
- Mulazimoglu, M.H.; Drew, R.A.L.; Gruzleski, J.E. Solution Treatment Study of Cast AI-Si Alloys by Electrical Conductivity. Can. Metall. Q. 1989, 28, 251–258. [Google Scholar] [CrossRef]
- Mulazimoglu, M.H.; Drew, R.A.L.; Gruzleski, J.E. The Effect of Strontium on the Electrical Resistivity and Conductivity of Aluminum-Silicon Alloys. Metall. Mater. Trans. A 1987, 18, 941–947. [Google Scholar] [CrossRef]
- Samuel, A.M.; Gauthier, J.; Samuel, F.H. Microstructural Aspects of the Dissolution and Melting of Al2Cu Phase in Al-Si Alloys during Solution Heat Treatment. Metall. Mater. Trans. A 1996, 27, 1785–1798. [Google Scholar] [CrossRef]
- Vandersluis, E.; Ravindran, C. Effects of Solution Heat Treatment Time on the As-Quenched Microstructure, Hardness and Electrical Conductivity of B319 Aluminum Alloy. J. Alloys Compd. 2020, 838, 155577. [Google Scholar] [CrossRef]
- Beroual, S.; Boumerzoug, Z.; Paillard, P.; Borjon-Piron, Y. Effects of Heat Treatment and Addition of Small Amounts of Cu and Mg on the Microstructure and Mechanical Properties of Al-Si-Cu and Al-Si-Mg Cast Alloys. J. Alloys Compd. 2019, 784, 1026–1035. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, Y.M.; Kim, Y.C. Influence of Precipitation on Thermal Diffusivity of Al-6Si-0.4Mg-0.9Cu-(Ti) Alloys. J. Alloys Compd. 2019, 775, 132–137. [Google Scholar] [CrossRef]
- Leo Lukas, H.; MSIT®. Al-Cu-Si Ternary Phase Diagram Evaluation Phase Diagrams, Crystallographic and Thermodynamic Data: Datasheet from MSI Eureka in SpringerMaterials. Available online: https://materials.springer.com/msi/docs/sm_msi_r_10_015417_01 (accessed on 7 March 2023).
- Hari Kumar, K.C.; Chakraborti, N.; Bodak, O.; Rokhlin, L.; MSIT®. Al-Mg-Si Ternary Phase Diagram Evaluation Phase Diagrams, Crystallographic and Thermodynamic Data: Datasheet from MSI Eureka in SpringerMaterials. Available online: https://materials.springer.com/msi/docs/sm_msi_r_10_014594_03 (accessed on 7 March 2023).
- Hwang, J.Y.; Banerjee, R.; Doty, H.W.; Kaufman, M.J. The Effect of Mg on the Structure and Properties of Type 319 Aluminum Casting Alloys. Acta Mater. 2009, 57, 1308–1317. [Google Scholar] [CrossRef]
- Han, Y.; Shao, D.; Chen, B.A.; Peng, Z.; Zhu, Z.X.; Zhang, Q.; Chen, X.; Liu, G.; Li, X.M. Effect of Mg/Si Ratio on the Microstructure and Hardness–Conductivity Relationship of Ultrafine-Grained Al–Mg–Si Alloys. J. Mater. Sci. 2017, 52, 4445–4459. [Google Scholar] [CrossRef]
- Mbuya, T.O.; Odera, B.O.; Ng’ang’a, S.P. Influence of Iron on Castability and Properties of Aluminium Silicon Alloys: Literature Review. Int. J. Cast. Met. Res. 2003, 16, 451–465. [Google Scholar] [CrossRef]
- Wang, Q.G.; Caceres, C.H.; Griffiths, J.R. Cracking of Fe-Rich Intermetallics and Eutectic Si Particles in an Al-7Si-0. 7Mg Casting Alloy. AFS Trans. 1998, 106, 131–136. [Google Scholar]
- Hwang, J.Y.; Doty, H.W.; Kaufman, M.J. The Effects of Mn Additions on the Microstructure and Mechanical Properties of Al–Si–Cu Casting Alloys. Mater. Sci. Eng. A 2008, 488, 496–504. [Google Scholar] [CrossRef]
- Gan, J.Q.; Du, J.; Wen, C.; Zhang, G.G.; Shi, M.B.; Yuan, Z.Z. The Effect of Fe Content on the Solidification Pathway, Microstructure and Thermal Conductivity of Hypoeutectic Al–Si Alloys. Int. J. Met. 2022, 16, 178–190. [Google Scholar] [CrossRef]
- Slack, G.A. Thermal Conductivity of Pure and Impure Silicon, Silicon Carbide, and Diamond. J. Appl. Phys. 1964, 35, 3460–3466. [Google Scholar] [CrossRef]
- Wei, L.; Vaudin, M.; Hwang, C.S.; White, G.; Xu, J.; Steckl, A.J. Heat Conduction in Silicon Thin Films: Effect of Microstructure. J. Mater. Res. 1995, 10, 1889–1896. [Google Scholar] [CrossRef]
- Volklein, F.; Baltes, H. A Microstructure for Measurement of Thermal Conductivity of Polysilicon Thin Films. J. Microelectromech. Syst. 1992, 1, 193–196. [Google Scholar] [CrossRef]
- Gunduz, M.; Hunt, J.D. The Measurement of Solid-Liquid Surface Energies in the Al-Cu, Al-Si and Pb-Sn Systems. Acta Metall. 1985, 33, 1651–1672. [Google Scholar] [CrossRef]
- Ocak, Y.; Aksoz, S.; Keslioglu, K.; Maraşli, N.; Cadirli, E.; Kaya, H. Interfacial Energies of Solid CuAl2 in the CuAl2-Ag2Al Pseudo Binary Alloy. Thin Solid Film. 2010, 518, 4322–4327. [Google Scholar] [CrossRef]
- Terada, Y.; Ohkubo, K.; Mohri, T.; Suzuki, T. Effects of Ternary Additions on Thermal Conductivity of NiAl. Intermetallics 1999, 7, 717–723. [Google Scholar] [CrossRef]
- Terada, Y.; Ohkubo, K.; Mohri, T.; Suzuki, T. Thermal Conductivity of Intermetallic Compounds with Metallic Bonding. Mater. Trans. 2002, 43, 3167–3176. [Google Scholar] [CrossRef] [Green Version]
- Caceres, C.H.; Djurdjevic, M.B.; Stockwell, T.J.; Sokolowski, J.H. The Effect of Cu Content on the Level of Microporosity in Al-Si-Cu-Mg Casting Alloys. Scr. Mater. 1999, 40, 631–637. [Google Scholar] [CrossRef]
- Hosch, T.; Napolitano, R.E. The Effect of the Flake to Fiber Transition in Silicon Morphology on the Tensile Properties of Al-Si Eutectic Alloys. Mater. Sci. Eng. A 2010, 528, 226–232. [Google Scholar] [CrossRef]
- Weng, W.P.; Nagaumi, H.; Sheng, X.D.; Fan, W.Z.; Chen, X.C.; Wang, X.N. Influence of Silicon Phase Particles on the Thermal Conductivity of Al-Si Alloys. In Light Metals 2019; Springer: Cham, Switzerland, 2019; pp. 193–198. [Google Scholar] [CrossRef]
- Chen, X.; Geng, H.Y.; Li, Y.X. Study on the Eutectic Modification Level of Al-7Si Alloy by Computer Aided Recognition of Thermal Analysis Cooling Curves. Mater. Sci. Eng. A 2006, 419, 283–289. [Google Scholar] [CrossRef]
- Wen, C.; Gan, J.Q.; Li, C.B.; Huang, Y.J.; Du, J. Comparative Study on Relationship Between Modification of Si Phase and Thermal Conductivity of Al–7Si Alloy Modified by Sr/RE/B/Sb Elements. Int. J. Met. 2020, 15, 194–205. [Google Scholar] [CrossRef]
- Li, L.F.; Li, D.Q.; Mao, F.; Feng, J.; Zhang, Y.Z.; Kang, Y.L. Effect of Cooling Rate on Eutectic Si in Al-7.0Si-0.3Mg Alloys Modified by La Additions. J. Alloys Compd. 2020, 826, 154206. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.F.; Xu, W.Z.; Hou, S.Y.; Hu, S.D. Simultaneous Improvement of Thermal Conductivity and Strength for Commercial A356 Alloy Using Strontium Modification Process. Met. Mater. Int. 2021, 27, 4742–4756. [Google Scholar] [CrossRef]
- Zuo, M.; Zhao, D.G.; Teng, X.Y.; Geng, H.R.; Zhang, Z.S. Effect of P and Sr Complex Modification on Si Phase in Hypereutectic Al-30Si Alloys. Mater. Des. 2013, 47, 857–864. [Google Scholar] [CrossRef]
- Jia, Y.D.; Cao, F.Y.; Ma, P.; Scudino, S.; Eckert, J.; Sun, J.F.; Wang, G. Microstructure and Thermal Conductivity of Hypereutectic Al-High Si Produced by Casting and Spray Deposition. J. Mater. Res. 2016, 31, 2948–2955. [Google Scholar] [CrossRef]
- Cook, J.G.; Moore, J.P.; Matsumura, T.; van der Meer, M.P. The Thermal and Electrical Conductivity of Aluminum. In Thermal Conductivity 14; Springer: Boston, MA, USA, 1976; pp. 65–71. [Google Scholar] [CrossRef]
- Zhang, C.; Du, Y.; Liu, S.H.; Liu, S.J.; Jie, W.Q.; Sundman, B. Microstructure and Thermal Conductivity of the As-Cast and Annealed Al–Cu–Mg–Si Alloys in the Temperature Range from 25 °C to 400 °C. Int. J. Thermophys. 2015, 36, 2869–2880. [Google Scholar] [CrossRef]
- Roy, S.; Allard, L.F.; Rodriguez, A.; Porter, W.D.; Shyam, A. Comparative Evaluation of Cast Aluminum Alloys for Automotive Cylinder Heads: Part II—Mechanical and Thermal Properties. Metall. Mater. Trans. A 2017, 48, 2543–2562. [Google Scholar] [CrossRef]
- Bakhtiyarov, S.I.; Overfelt, R.A.; Teodorescu, S.G. Electrical and Thermal Conductivity of A319 and A356 Aluminum Alloys. J. Mater. Sci. 2001, 36, 4643–4648. [Google Scholar] [CrossRef]
- Shanks, H.R.; Maycock, P.D.; Sidles, P.H.; Danielson, G.C. Thermal Conductivity of Silicon from 300 to 1400°K. Phys. Rev. 1963, 130, 1743–1748. [Google Scholar] [CrossRef]
- Glassbrenner, C.J.; Slack, G.A. Thermal Conductivity of Silicon and Germanium from 3°K to the Melting Point. Phys. Rev. 1964, 134, A1058–A1069. [Google Scholar] [CrossRef]
- Fulkerson, W.; Moore, J.P.; Williams, R.K.; Graves, R.S.; McElroy, D.L. Thermal Conductivity, Electrical Resistivity, and Seebeck Coefficient of Silicon from 100 to 1300°K. Phys. Rev. 1968, 167, 765–782. [Google Scholar] [CrossRef]
- Zhang, C.; Du, Y.; Liu, S.H.; Liu, Y.L.; Sundman, B. Thermal Conductivity of Al-Cu-Mg-Si Alloys: Experimental Measurement and CALPHAD Modeling. Thermochim. Acta 2016, 635, 8–16. [Google Scholar] [CrossRef]
- Martin, J.J. Thermal Conductivity of Mg2Si, Mg2Ge and Mg2Sn. J. Phys. Chem. Solids 1972, 33, 1139–1148. [Google Scholar] [CrossRef]
- Vandersluis, E.; Ravindran, C. Influence of Solidification Rate on the Microstructure, Mechanical Properties, and Thermal Conductivity of Cast A319 Al Alloy. J. Mater. Sci. 2019, 54, 4325–4339. [Google Scholar] [CrossRef]
- Choi, S.W.; Kim, Y.M.; Lee, K.M.; Cho, H.S.; Hong, S.K.; Kim, Y.C.; Kang, C.S.; Kumai, S. The Effects of Cooling Rate and Heat Treatment on Mechanical and Thermal Characteristics of Al–Si–Cu–Mg Foundry Alloys. J. Alloys Compd. 2014, 617, 654–659. [Google Scholar] [CrossRef]
- El Sebaie, O.; Samuel, A.M.; Samuel, F.H.; Doty, H.W. The Effects of Mischmetal, Cooling Rate and Heat Treatment on the Eutectic Si Particle Characteristics of A319.1, A356.2 and A413.1 Al-Si Casting Alloys. Mater. Sci. Eng. A 2008, 480, 342–355. [Google Scholar] [CrossRef]
- Adamane, A.R.; Arnberg, L.; Fiorese, E.; Timelli, G.; Bonollo, F. Influence of Injection Parameters on the Porosity and Tensile Properties of High-Pressure Die Cast Al-Si Alloys: A Review. Int. J. Met. 2015, 9, 43–52. [Google Scholar] [CrossRef]
- Cao, H.X.; Hao, M.Y.; Shen, C.; Liang, P. The Influence of Different Vacuum Degree on the Porosity and Mechanical Properties of Aluminum Die Casting. Vacuum 2017, 146, 278–281. [Google Scholar] [CrossRef]
- Lakshmikanthan, A.; Angadi, S.; Malik, V.; Saxena, K.K.; Prakash, C.; Dixit, S.; Mohammed, K.A. Mechanical and Tribological Properties of Aluminum-Based Metal-Matrix Composites. Materials 2022, 15, 6111. [Google Scholar] [CrossRef]
- Vandersluis, E.; Andilab, B.; Ravindran, C.; Bamberger, M. In-Situ Characterization of the Solution Heat Treatment of B319 Aluminum Alloy Using X-ray Diffraction and Electron Microscopy. Mater. Charact. 2020, 167, 110499. [Google Scholar] [CrossRef]
- Li, K.; Zhang, J.; Chen, X.L.; Yin, Y.H.; He, Y.; Zhou, Z.Q.; Guan, R.G. Microstructure Evolution of Eutectic Si in Al-7Si Binary Alloy by Heat Treatment and Its Effect on Enhancing Thermal Conductivity. J. Mater. Res. Technol. 2020, 9, 8780–8786. [Google Scholar] [CrossRef]
- Colley, L.J.; Wells, M.A.; Poole, W.J. Microstructure-Strength Models for Heat Treatment of Al-Si-Mg Casting Alloys I: Microstructure Evolution and Precipitation Kinetics. Can. Metall. Q. 2014, 53, 125–137. [Google Scholar] [CrossRef]
- Cai, Q.; Mendis, C.L.; Wang, S.H.; Chang, I.T.H.; Fan, Z.Y. Effect of Heat Treatment on Microstructure and Tensile Properties of Die-Cast Al-Cu-Si-Mg Alloys. J. Alloys Compd. 2021, 881, 160559. [Google Scholar] [CrossRef]
- Kim, Y.M.; Choi, S.W.; Kim, Y.C.; Kang, C.S. Increasing the Thermal Diffusivity of Al–Si–Mg Alloys by Heat Treatment. J. Therm. Anal. Calorim. 2022, 147, 2139–2146. [Google Scholar] [CrossRef]
- Ragab, K.A.; Samuel, A.M.; Al-Ahmari, A.M.A.; Samuel, F.H.; Doty, H.W. Influence of Fluidized Sand Bed Heat Treatment on the Performance of Al–Si Cast Alloys. Mater. Des. 2011, 32, 1177–1193. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Samuel, E.; Samuel, A.M.; Al-Ahmari, A.M.A.; Samuel, F.H. Metallurgical Parameters Controlling the Microstructure and Hardness of Al–Si–Cu–Mg Base Alloys. Mater. Des. 2011, 32, 2130–2142. [Google Scholar] [CrossRef]
- Sjolander, E.; Seifeddine, S. Artificial Ageing of Al-Si-Cu-Mg Casting Alloys. Mater. Sci. Eng. A 2011, 528, 7402–7409. [Google Scholar] [CrossRef]
- Esmaeili, S.; Lloyd, D.J.; Poole, W.J. Effect of Natural Aging on the Resistivity Evolution during Artificial Aging of the Aluminum Alloy AA6111. Mater. Lett. 2005, 59, 575–577. [Google Scholar] [CrossRef]
- Rauta, V.; Cingi, C.; Orkas, J. Effect of Annealing and Metallurgical Treatments on Thermal Conductivity of Aluminium Alloys. Int. J. Met. 2016, 10, 157–171. [Google Scholar] [CrossRef]
- Belov, N.A.; Akopyan, T.K.; Shurkin, P.K.; Korotkova, N.O. Comparative Analysis of Structure Evolution and Thermal Stability of Commercial AA2219 and Model Al-2 wt%Mn-2 wt%Cu Cold Rolled Alloys. J. Alloys Compd. 2021, 864, 158823. [Google Scholar] [CrossRef]
- Barkov, R.Y.; Mikhaylovskaya, A.V.; Yakovtseva, O.A.; Loginova, I.S.; Prosviryakov, A.S.; Pozdniakov, A.V. Effects of Thermomechanical Treatment on the Microstructure, Precipitation Strengthening, Internal Friction, and Thermal Stability of Al–Er-Yb-Sc Alloys with Good Electrical Conductivity. J. Alloys Compd. 2021, 855, 157367. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Ma, M.Y.; Shen, F.H.; Yi, D.Q.; Wang, B. Influence of Deformation and Annealing on Electrical Conductivity, Mechanical Properties and Texture of Al-Mg-Si Alloy Cables. Mater. Sci. Eng. A 2018, 710, 27–37. [Google Scholar] [CrossRef]
- Luo, G.; Huang, Y.J.; Li, C.B.; Huang, Z.H.; Du, J. Microstructures and Mechanical Properties of Al-2Fe-XCo Ternary Alloys with High Thermal Conductivity. Materials 2020, 13, 3728. [Google Scholar] [CrossRef]
- Liu, C.H.; Chen, J.H.; Li, C.; Wu, C.L.; Li, D.Z.; Li, Y.Y. Multiple Silicon Nanotwins Formed on the Eutectic Silicon Particles in Al-Si Alloys. Scr. Mater. 2011, 64, 339–342. [Google Scholar] [CrossRef]
- Qi, X.; Takata, N.; Suzuki, A.; Kobashi, M.; Kato, M. Managing Both High Strength and Thermal Conductivity of a Laser Powder Bed Fused Al–2.5Fe Binary Alloy: Effect of Annealing on Microstructure. Mater. Sci. Eng. A 2021, 805, 140591. [Google Scholar] [CrossRef]
- Murr, L.E.; Gaytan, S.M.; Ramirez, D.A.; Martinez, E.; Hernandez, J.; Amato, K.N.; Shindo, P.W.; Medina, F.R.; Wicker, R.B. Metal Fabrication by Additive Manufacturing Using Laser and Electron Beam Melting Technologies. J. Mater. Sci. Technol. 2012, 28, 1–14. [Google Scholar] [CrossRef]
- Gadagi, B.; Lekurwale, R. A Review on Advances in 3D Metal Printing. Mater. Today Proc. 2021, 45, 277–283. [Google Scholar] [CrossRef]
- Herzog, D.; Seyda, V.; Wycisk, E.; Emmelmann, C. Additive Manufacturing of Metals. Acta Mater. 2016, 117, 371–392. [Google Scholar] [CrossRef]
- Kim, M.S. Effects of Processing Parameters of Selective Laser Melting Process on Thermal Conductivity of AlSi10Mg Alloy. Materials 2021, 14, 2410. [Google Scholar] [CrossRef]
- Aboulkhair, N.T.; Tuck, C.; Ashcroft, I.; Maskery, I.; Everitt, N.M. On the Precipitation Hardening of Selective Laser Melted AlSi10Mg. Metall. Mater. Trans. A 2015, 46, 3337–3341. [Google Scholar] [CrossRef]
- Kimura, T.; Nakamoto, T.; Mizuno, M.; Araki, H. Effect of Silicon Content on Densification, Mechanical and Thermal Properties of Al-XSi Binary Alloys Fabricated Using Selective Laser Melting. Mater. Sci. Eng. A 2017, 682, 593–602. [Google Scholar] [CrossRef] [Green Version]
- Butler, C.; Babu, S.; Lundy, R.; Meehan, R.O.; Punch, J.; Jeffers, N. Effects of Processing Parameters and Heat Treatment on Thermal Conductivity of Additively Manufactured AlSi10Mg by Selective Laser Melting. Mater. Charact. 2021, 173, 110945. [Google Scholar] [CrossRef]
- Prashanth, K.G.; Scudino, S.; Klauss, H.J.; Surreddi, K.B.; Löber, L.; Wang, Z.; Chaubey, A.K.; Kühn, U.; Eckert, J. Microstructure and Mechanical Properties of Al-12Si Produced by Selective Laser Melting: Effect of Heat Treatment. Mater. Sci. Eng. A 2014, 590, 153–160. [Google Scholar] [CrossRef]
- Brandl, E.; Heckenberger, U.; Holzinger, V.; Buchbinder, D. Additive Manufactured AlSi10Mg Samples Using Selective Laser Melting (SLM): Microstructure, High Cycle Fatigue, and Fracture Behavior. Mater. Des. 2012, 34, 159–169. [Google Scholar] [CrossRef]
- Ming, X.L.; Song, D.R.; Yu, A.T.; Tan, H.; Zhang, Q.; Zhang, Z.W.; Chen, J.; Lin, X. Effect of Heat Treatment on Microstructure, Mechanical and Thermal Properties of Selective Laser Melted AlSi7Mg Alloy. J. Alloys Compd. 2023, 945, 169278. [Google Scholar] [CrossRef]
Alloys (wt.%) | Temper | Tensile Strength (MPa) | Thermal Conductivity (W m−1 K−1) |
---|---|---|---|
308 (Al-5.5Si-4.5Cu) | F | 195 | 142 |
319 (Al-6Si-3.5Cu) | T6 | 280 | 109 |
354 (Al-9Si-1.8Cu-0.5Mg) | T6 | 380 | 128 |
355 (Al-5Si-1.3Cu-0.5Mg) | T6 | 240 | 152 |
356 (Al-7Si-0.3Mg) | T6 | 230 | 151 |
357 (Al-7Si-0.5Mg) | T6 | 262 | 152 |
359 (Al-9Si-0.6Mg) | T6 | 276 | 138 |
360 (Al-9.5Si-0.5Mg) | As-cast | 305 | 113 |
380 (Al-8.5Si-3.5Cu) | As-cast | 330 | 96 |
383 (Al-10.5Si-2.5Cu) | As-cast | 310 | 96 |
384 (Al-11.2Si-3.8Cu) | As-cast | 330 | 92 |
390 (Al-17Si-4.5Cu-0.6Mg) | T7 | 250 | 134 |
413 (Al-12Si) | As-cast | 300 | 121 |
References | Si | Cu | Mg | Mn | Fe | Zn | Cr | Ti | V | Ni | Zr |
---|---|---|---|---|---|---|---|---|---|---|---|
Van Horn [44] | 1.02 | 0.344 | 0.54 | 2.94 | 2.56 | 0.09 | 4.00 | 2.88 | 3.58 | 0.81 | 1.74 |
Sacharow [45] | 0.4 | 0.51 | 2.6 | 0.41 | 0.15 | 3.65 | 4.56 | 0.38 | 1.58 | ||
Gauthier [45] | 0.47 | 0.31 | 0.63 | 3.8 | 0.14 | 0.01 | 4.7 | 3.75 | 3.94 | 0.09 | |
CRC-handbook [46] | 0.67 | 0.32 | 0.5 | 3.2 | 0.9 | 4.42 | 3.14 | 4.16 | 0.05 | 1.35 | |
Bohner [46] | 2 | 0.4 | 0.5 | 3 | 0.2 | 0.01 | 4 | / | 4 | 0.2 | / |
Gauthier [46] | 0.37 | 0.22 | 0.4 | 3.3 | 0.26 | 0.09 | 3.6 | 2.8 | 4 | 0.04 | / |
Willey [1] | 1 | 0.34 | 0.5 | 2.9 | 2.6 | 0.1 | 4 | 2.9 | 3.6 | 0.8 | 1.7 |
Harrington R.H. [1] | / | 0.5 | 0.6 | 2.5 | 0.1 | / | 3.8 | 1.8 | / | 0.1 | 0.5 |
Elements | Maximum Solubility | Increase in Resistivity (μΩ cm/wt.%) | ||
---|---|---|---|---|
T/℃ | wt.% | |||
Si | 577 | 1.65 | 1.02 | 0.088 |
Cu | 548 | 5.67 | 0.344 | 0.03 |
Mg | 451 | 14.9 | 0.54 | 0.22 |
Zn | 382 | 82.8 | 0.09 | 0.023 |
Mn | 660 | 1.82 | 2.94 | 0.34 |
Ti | 665 | 1.15 | 2.88 | 0.12 |
Cr | 660 | 0.77 | 4.00 | 0.18 |
V | 662 | 0.37 | 3.58 | 0.28 |
Zr | 661 | 0.28 | 1.74 | 0.044 |
Fe | 655 | 0.052 | 2.56 | 0.058 |
Ni | 640 | 0.05 | 0.81 | 0.061 |
Designation | Process Procedure |
---|---|
T4 | Solution treatment, natural aging |
T5 | Solution treatment, artificial aging at a low temperature or for a short time |
T6 | Solution treatment, artificial aging |
T7 | Solution treatment, overaging/stabilizing |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, A.; Li, Y. Thermal Conductivity of Aluminum Alloys—A Review. Materials 2023, 16, 2972. https://doi.org/10.3390/ma16082972
Zhang A, Li Y. Thermal Conductivity of Aluminum Alloys—A Review. Materials. 2023; 16(8):2972. https://doi.org/10.3390/ma16082972
Chicago/Turabian StyleZhang, Ailing, and Yanxiang Li. 2023. "Thermal Conductivity of Aluminum Alloys—A Review" Materials 16, no. 8: 2972. https://doi.org/10.3390/ma16082972
APA StyleZhang, A., & Li, Y. (2023). Thermal Conductivity of Aluminum Alloys—A Review. Materials, 16(8), 2972. https://doi.org/10.3390/ma16082972