Surface Modification of Silicone by Dielectric Barrier Discharge Plasma
Abstract
:1. Introduction
2. Experimental
2.1. Dielectric Barrier Discharge Reactor
2.2. Contact Angle Measurements
2.3. FTIR-ATR Measurements
2.4. AFM Measurements
2.5. XPS Investigation
2.6. Research Methodology
3. Results and Discussion
3.1. Modification of Silicone Rubber in Barrier Discharge
3.2. The Durability of Modification over Time
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Kima, H.B.; Baikb, K.Y.; Moona, M.H.; Sung, C.K. Enhanced corrosion resistance of silicone-coated stents by plasma treatment. Acta Phys. Pol. A 2016, 129, 857–860. [Google Scholar] [CrossRef]
- Available online: https://plasticseurope.org/wp-content/uploads/2021/12/Plastics-the-Facts-2021-web-final.pdf (accessed on 29 March 2023).
- Chu, P.K.; Chen, J.Y.; Wang, L.P.; Huang, N. Plasma-surface modification of biomaterials. Mater. Sci. Eng. R Rep. 2002, 36, 143–206. [Google Scholar] [CrossRef] [Green Version]
- Żenkiewicz, M.; Rytlewski, P.; Malinowski, R. Metody i urządzenia stosowane w modyfikowaniu tworzyw polimerowych plazmą niskotemperaturową. Polim. Polym. 2011, 56, 185–195. [Google Scholar]
- Johansson, K.S. Applied Plastics Engineering Handbook, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar] [CrossRef]
- Tryburcy, J. Modyfikacja własności powierzchni detali z tworzyw sztucznych. PlastNews 2015, 1, 40–41. [Google Scholar]
- Chan, C.M.; Ko, T.M.; Hiraoka, H. Polymer surface modification by plasmas and photons. Surf. Sci. Rep. 1996, 24, 1–54. [Google Scholar] [CrossRef]
- Pieczyńska, D.; Ostaszewska, U.; Bieliński, D.M.; Jagielski, J. Modyfikacja polimerów za pomocą bombardowania jonowego Cz. I. Polimery 2011, 56, 439–451. [Google Scholar]
- Harper, C. Modern Plastics Handbook; McGraw-Hill: New York, NY, USA, 2000. [Google Scholar]
- Marchand-Brynaert, J.; Pantano, G. Surface fluorination of PEEK film by selective wet-chemistry. Polymer 1997, 38, 1387–1394. [Google Scholar] [CrossRef]
- Hansen, C. On predicting environmental stress cracking in polymers. Polym. Degrad. Stab. 2002, 77, 43–53. [Google Scholar] [CrossRef]
- Dobrzański, L.; Dobrzańska-Danikiewicz, A. Kształtowanie struktury i własności powierzchni materiałów inżynierskich; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 2013; Volume 343, pp. 347–355. [Google Scholar]
- Desai, S.; Singh, R.P. Surface Modification of Polyethylene. Adv. Polym. Sci. 2004, 169, 231–294. [Google Scholar]
- Rytlewski, P. Studium laserowego i plazmowego modyfikowania warstwy wierzchniej materiałów polimerowych; UKW: Bydgoszcz, Poland, 2015. [Google Scholar]
- Guan, H.; Chen, X.; Du, H.; Jiang, T.; Paramane, A.; Zhou, H. Surface potential decay and DC surface flashover characteristics of DBD plasma-treated silicone rubber. Nanotechnology 2020, 31, 424005. [Google Scholar] [CrossRef]
- Guan, H.; Chen, X.; Du, H.; Paramane, A.; Zhou, H. Mechanisms of surface charge dissipation of silicone rubber enhanced by dielectric barrier discharge plasma treatments. J. Appl. Phys. 2019, 126, 093301. [Google Scholar] [CrossRef]
- Ren, X.; Bachman, M.; Sims, C.; Li, G.P.; Allbritton, N. Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). J. Chromatogr. B Biomed. Sci. Appl. 2001, 762, 117–125. [Google Scholar] [CrossRef] [PubMed]
- Peterson, S.L.; McDonald, A.; Gourley, P.L.; Sasaki, D.Y. Poly(dimethylsiloxane) thin films as biocompatible coatings for microfluidic devices: Cell culture and flow studies with glial cells. J. Biomed. Mater. Res. Part A 2005, 72, 10–18. [Google Scholar] [CrossRef]
- Boening, H.V. Fundamentals of Plasma Chemistry and Technology; Technomic Publishing Co. Inc.: Lancaster, Pennsylvania, 1988. [Google Scholar]
- Carlsson, C.M.G.; Johansson, K. Surface modification of plastics by plasma treatment and plasma polymerization and its effect on adhesion. Surf. Interface Anal. 1993, 20, 441–448. [Google Scholar] [CrossRef]
- Collaud, M.; Groening, P.; Nowak, S.; Schlapbach, L. Plasma treatment of polymers: The effect of the plasma parameters on the chemical, physical, and morphological states of the polymer surface and on the metal-polymer interface. J. Adhes. Sci. Technol. 1994, 8, 1115–1127. [Google Scholar] [CrossRef]
- Guezenoc, H.; Segui, Y.; Thery, S. Adhesion Characteristics of Plasma-treated Polypropylene to Mild Steel. J. Adhes. Sci. Technol. 1993, 7, 953–965. [Google Scholar] [CrossRef]
- Foerch, R.; Mcintyre, N.S.; Sodhi, R.N.S. Nitrogen plasma treatment of polyethylene and polystyrene in a remote plasma reactor. J. Appl. Polym. Sci. 1990, 40, 1903–1915. [Google Scholar] [CrossRef]
- Foerch, R.; McIntyre, M.S.; Hunter, D.H. Oxidation of polyethylene surfaces by remote plasma discharge: A comparison study with alternative oxidation methods. J. Appl. Polym. Sci. Part A 1990, 28, 193–204. [Google Scholar] [CrossRef]
- Wu, D.; Gutowski, V.; Li, S. Ammonia Plasma Treatment of Polyolefins for Adhesive Bonding with Cyanoacrylate Adhesive. J. Adhes. Sci. Technol. 1995, 9, 501–525. [Google Scholar]
- Greenwood, O.D.; Boyd, R.D.; Hopkins, J. Atmospheric silent discharge versus low-pressure plasma treatment of polyethylene, polypropylene, polyisobutylene, and polystyrene. J. Adhes. Sci. Technol. 1995, 9, 311–326. [Google Scholar] [CrossRef]
- Strobel, M.; Corn, S.; Lyons, C.S.; Korba, G.A. Surface modification of polypropylene with CF4, CF3H, CF3Cl, and CF3Br plasmas. J. Polym. Sci. Polym. Chem. 1985, 23, 1125–1135. [Google Scholar] [CrossRef]
- Inagaki, N.; Tasaka, S.; Suzuki, Y. Surface chlorination of polypropylene film by CHCI3 plasma. J. Appl. Polym. Sci. 1994, 51, 2131–2137. [Google Scholar] [CrossRef]
- Stobel, M.; Vora, K.; Corn, S. Plasma reactions of CF3Cl. J. Appl. Polym. Sci. 1990, 46, 61–90. [Google Scholar] [CrossRef]
- Inagaki, N.; Tasaka, S.; Imai, M. Hydrophilic surface modification of polypropylene films by CCl4 plasma. J. Appl. Polym. Sci. 1993, 48, 1963–1972. [Google Scholar] [CrossRef]
- Strobel, M.; Corn, S.; Lyons, C. Plasma fluorination of polyolefins. J. Appl. Polym. Sci. Part A 1987, 25, 1295–1307. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, B.; Chen, S.; Sun, Y.; Yang, X.; Peng, Y.; Chen, X.; Zhang, G. Surface modification of silicone rubber by CF4 radio frequency capacitively coupled plasma for improvement of flashover. Plasma Sci. Technol. 2022, 24, 025501. [Google Scholar] [CrossRef]
- Żenkiewicz, M. Wyładowania koronowe w powietrzu jako metoda modyfikowania warstwy wierzchniej materiałaów polimerowych. Polim. Polym. 2008, 53, 1–13. [Google Scholar]
- Romero-Sanchez, M.; Pastor-Blas, M.; Martin-Martinez, J. Treatment of a styrene-butadiene-styrene rubber with a corona discharge to improve the adhesion to polyurethane adhesive. Int. J. Adhes. Adhes. 2003, 23, 49–57. [Google Scholar] [CrossRef]
- Sioshansi, P.; Tobin, E.J. Surface treatment of biomaterials by ion beam processes. Surf. Coat. Technol. 1996, 83, 175–182. [Google Scholar] [CrossRef]
- Favia, P.; d”Agostino, R. Plasma treatments and plasma deposition of polymers for biomedical applications. Surf. Coat. Technol. 1998, 98, 1102–1106. [Google Scholar] [CrossRef]
- Picraux, S.T.; Pope, L.E. Tailored Surface Modification by Ion Implantation and Laser Treatment. Science 1984, 226, 615–622. [Google Scholar] [CrossRef] [PubMed]
- Ohl, A.; Schroder, K. Plasma-induced chemical micropatterning for cell culturing applications: A brief review. Surf. Coat. Technol. 1999, 116–119, 820–830. [Google Scholar] [CrossRef]
- Hillborg, H.; Sandelin, M.; Gedde, U.W. Hydrophobic recovery of polydimethylsiloxane after exposure to partial discharges as a function of crosslink density. Polymer 2001, 42, 7349–7362. [Google Scholar] [CrossRef]
- Hegemann, D.; Gaiser, S. Plasma surface engineering for manmade soft materials: A review. J. Phys. D Appl. Phys. 2022, 55, 173002. [Google Scholar] [CrossRef]
- Jan Roth, J.; Albrecht, V.; Nitschke, M.; Bellmann, C.; Simon, F.; Stefan Zschoche, S.; Michel, S.; Luhmann, C.; Grundke, K.; Voit, B. Surface functionalization of silicone rubber for permanent adhesion improvement. Langmuir 2008, 24, 12603. [Google Scholar] [CrossRef] [PubMed]
- Kruszewski, S.; Kobiela, T. AFM and optical investigations of SERS-active silver electrodes. Vacuum 1999, 54, 245. [Google Scholar] [CrossRef]
- Owen, M.J.; Smith, P.J. Plasma treatment of polydimethylsiloxane. J. Adhes. Sci. Technol. 1994, 8, 1063–1075. [Google Scholar] [CrossRef]
- Rytlewski, P.; Żenkiewicz, M. Laser-induced surface modification of polystyrene. Appl. Surf. Sci. 2009, 256, 857–861. [Google Scholar] [CrossRef]
- Robert-Nicoud, G.R.; Donno, R.; Cadman, C.J.; Alexander, M.R.; Tirelli, N. Surface modification of silicone via colloidal deposition of amphiphilic block copolymers. Polym. Chem. 2014, 5, 6687–6701. [Google Scholar] [CrossRef] [Green Version]
Unmodified Samples | |||||
---|---|---|---|---|---|
Material | Contact Angle Water [°] | Contact Angle Dijodomethan [°] | Dispersive Component [mJ/m2] | Polar Component (pn) [mJ/m2] | SFE [mJ/m2] |
Silicone | 80.7 | 48.9 | 30.8 | 5.3 | 36.0 |
Exposition Time [s] | Power [W] | Air | Air + CO2 | Air + N2 | O2 | N2 | Ar + CO2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SFE | SFE | SFE | SFE | SFE | SFE | ||||||||
15 | 10 | 38.5 | 73.0 | 47.9 | 69.8 | 48.3 | 72.6 | 40.9 | 74.5 | 39.8 | 66.6 | 35.5 | 59.3 |
15 | 20 | 42.2 | 70.1 | - | - | - | - | - | - | - | - | ||
15 | 30 | 44.3 | 73.5 | 44.7 | 71.3 | 44.2 | 73.0 | 45.3 | 73.2 | 45.7 | 72.8 | 39.6 | 69.2 |
30 | 10 | 35.5 | 60.8 | 44.3 | 69.6 | 46.0 | 72.4 | 46.5 | 70.9 | 43.4 | 71.2 | 31.0 | 60.4 |
30 | 20 | 42.8 | 67.3 | - | - | - | - | - | - | - | - | ||
30 | 30 | 44.0 | 70.3 | 45.8 | 72.0 | 46.3 | 72.3 | 48.2 | 72.8 | 47.0 | 72.8 | 45.0 | 72.9 |
60 | 10 | 31.7 | 58.6 | 42.7 | 65.8 | 44.7 | 69.4 | 44.2 | 73.6 | 44.3 | 71.9 | 42.8 | 70.5 |
60 | 20 | 36.5 | 64.8 | - | - | - | - | - | - | - | - | ||
60 | 30 | 43.4 | 69.8 | 44.3 | 70.3 | 45.6 | 71.3 | 41.9 | 70.4 | 44.7 | 73.3 | 45.0 | 72.1 |
Exposure Time [s] | Discharge Power [W] | Atmosphere | Time Elapsed Since Modification [weeks] | Polar Component | Value Change SFE [%] | Changing the Value of the Polar Component [%] | |
---|---|---|---|---|---|---|---|
15 | 30 | pow. | 0 | 44.7 | 73.5 | ||
15 | 30 | pow. | 4 | 6.8 | 35.6 | 51 | 85 |
15 | 30 | O2 | 0 | 45.3 | 73.2 | ||
15 | 30 | O2 | 1 | 18.2 | 47.1 | 36 | 60 |
15 | 30 | O2 | 2 | 2.9 | 38.5 | 47 | 94 |
60 | 30 | Ar. | 0 | 41.1 | 70.2 | ||
60 | 30 | Ar | 4 | 6.3 | 39.5 | 44 | 85 |
60 | 30 | Ar + CO2 | 0 | 44.3 | 70.3 | ||
60 | 30 | Ar + CO2 | 4 | 3.1 | 42.6 | 39 | 93 |
Element | Pristine Rubber | Ar + CO2 0 Day | Ar + CO2 Four Weeks | Ar 5 Days | Ar 4 Weeks |
---|---|---|---|---|---|
C | 46.4 | 33.1 | 42.5 | 48.2 | 46.4 |
O | 22.5 | 37.6 | 31.1 | 28.2 | 29.5 |
Si | 31.8 | 29.3 | 26.4 | 23.6 | 24.1 |
O/C | 0.48 | 1.14 | 0.73 | 0.59 | 0.64 |
O/Si | 0.71 | 1.28 | 1.18 | 1.19 | 1.22 |
C/Si | 1.46 | 1.13 | 1.60 | 2.04 | 1.93 |
Sample | 2C-Si-O | 3C-Si-O | C-O | C=O | O-Si | O-C | C-Si-O | Si/OH/O |
---|---|---|---|---|---|---|---|---|
Pristine (BE eV) [%] | 285.0 eV 82% | 284.0; 16% | 286.8 2% | - | 532.6 98.5% | 535.3 1.5% | 102.4 100% | |
Ar + CO2 1 day | 285.0 56% | 284.0 19% | 286.8 24% | 288.6 1% | 532.7 99% | 535.5 1% | 102.5 82% | 104.0 18% |
Ar + CO2 4 weeks | 285.0 54% | 284.3 40% | 286.1 6% | - | 532.5 100% | - | 102.5 70.5% | 103.8 29.5 |
Ar 5 days | 285.0 87% | 283.6 1% | 286.7 8% | 288.6 4% | 533.0 97% | 534.5 3% | 103.0 86% | 104.2 14% |
Ar 4 week | 285.0 84% | 283.8 6% | 287.0 6% | 289.0 4% | 532.4 99% | 535.6 1% | 102.1 95% | 104.1 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Krawczyk, K.; Jankowska, A.; Młotek, M.; Ulejczyk, B.; Kobiela, T.; Ławniczak-Jabłońska, K. Surface Modification of Silicone by Dielectric Barrier Discharge Plasma. Materials 2023, 16, 2973. https://doi.org/10.3390/ma16082973
Krawczyk K, Jankowska A, Młotek M, Ulejczyk B, Kobiela T, Ławniczak-Jabłońska K. Surface Modification of Silicone by Dielectric Barrier Discharge Plasma. Materials. 2023; 16(8):2973. https://doi.org/10.3390/ma16082973
Chicago/Turabian StyleKrawczyk, Krzysztof, Agnieszka Jankowska, Michał Młotek, Bogdan Ulejczyk, Tomasz Kobiela, and Krystyna Ławniczak-Jabłońska. 2023. "Surface Modification of Silicone by Dielectric Barrier Discharge Plasma" Materials 16, no. 8: 2973. https://doi.org/10.3390/ma16082973
APA StyleKrawczyk, K., Jankowska, A., Młotek, M., Ulejczyk, B., Kobiela, T., & Ławniczak-Jabłońska, K. (2023). Surface Modification of Silicone by Dielectric Barrier Discharge Plasma. Materials, 16(8), 2973. https://doi.org/10.3390/ma16082973