Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Simulation Results of Surface Layer Temperature Field
3.2. Elements Distribution in Depth
3.3. Surface Morphology
3.4. Phase Structure Analysis
3.5. Mechanical Properties
4. Conclusions
- (1)
- The designed fabrication of Ti-Cr alloy coatings on Ti substrate was successfully achieved using the IPIBMM method. The melting depth observed in the experiment was 1.15 μm, which is in close agreement with the calculated value.
- (2)
- The increase in the IPIB pulse number leads to more homogenized element distribution and the formation of compositional gradient layers, despite the reduction in thickness of the alloy layer due to surface sputtering. The resulting gradient Ti-Cr alloy coating is metallurgically bonded to the Ti substrate, with a thickness of ~770 nm.
- (3)
- Microstructural analysis revealed that IPIB irradiation caused the formation of craters and cracks on the surface. However, further irradiation eliminated these defects and led to a smoother surface, primarily due to the homogenization of element distribution and the formation of a compositional gradient layer.
- (4)
- The IPIBMM process induced the generation of metastable structures in the Ti-Cr alloy coatings. The addition of Cr facilitated the lattice transition in Ti from α-Ti to β-Ti. IPIB irradiation resulted in the formation of the supersaturated solid solution structures β-Ti (Cr) and Cr (Ti) and a change of the preferred orientation of Cr from (110) to (200).
- (5)
- Compared with pure Ti, Ti-Cr alloying coating samples fabricated via IPIBMM displayed higher hardness, plastic factor ηp, and H/E and H3/E2 ratios, which increased significantly with further irradiation. This indicates that the surface alloying of Cr by IPIBMM is an effective strategy to improve the hardness, plastic deformation resistance, and wear resistance of pure Ti.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jablonski, H.; Wedemeyer, C.; Rekasi, H.; Fietzek, H.; Mertens, T.; Kolb, M.; Jäger, M.; Kauther, M.D. Laser-Induced Nanostructures on Titanium Surfaces as Developed in the Aeronautics and Space Industry Foster Osteoblast Activity and Function In Vitro. Adv. Mater. Interfaces 2018, 5, 1801125. [Google Scholar] [CrossRef]
- Boyer, R.R. An Overview on the Use of Titanium in the Aerospace Industry. Mater. Sci. Eng. A 1996, 213, 103–114. [Google Scholar] [CrossRef]
- Sidambe, A.T. Biocompatibility of Advanced Manufactured Titanium Implants-A Review. Materials 2014, 7, 8168–8188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Okada, M.; Hara, E.S.; Yabe, A.; Okada, K.; Shibata, Y.; Torii, Y.; Nakano, T.; Matsumoto, T. Titanium as an Instant Adhesive for Biological Soft Tissue. Adv. Mater. Interfaces 2020, 7, 1902089. [Google Scholar] [CrossRef] [Green Version]
- Amira, S.; Santos, S.F.; Huot, J. Hydrogen Sorption Properties of Ti–Cr Alloys Synthesized by Ball Milling and Cold Rolling. Intermetallics 2010, 18, 140–144. [Google Scholar] [CrossRef]
- Ho, W.-F.; Chen, W.-K.; Wu, S.-C.; Hsu, H.-C. Structure, Mechanical Properties, and Grindability of Dental Ti–Zr Alloys. J. Mater. Sci. Mater. Med. 2008, 19, 3179–3186. [Google Scholar] [CrossRef]
- Saud, S.N.; Hosseinian, S.R.; Bakhsheshi-Rad, H.R.; Yaghoubidoust, F.; Iqbal, N.; Hamzah, E.; Ooi, C.H.R. Corrosion and Bioactivity Performance of Graphene Oxide Coating on Ti Nb Shape Memory Alloys in Simulated Body Fluid. Mater. Sci. Eng. C 2016, 68, 687–694. [Google Scholar] [CrossRef]
- Akbarpour, M.R.; Moniri Javadhesari, S. Wear Performance of Novel Nanostructured Ti-Cu Intermetallic Alloy as a Potential Material for Biomedical Applications. J. Alloys Compd. 2017, 699, 882–886. [Google Scholar] [CrossRef]
- Takemoto, S.; Hattori, M.; Yoshinari, M.; Kawada, E.; Asami, K.; Oda, Y. Corrosion Behavior and Surface Characterization of Ti-20Cr Alloy in a Solution Containing Fluoride. Dent. Mater. J. 2004, 23, 379–386. [Google Scholar] [CrossRef] [Green Version]
- Mallia, B.; Dearnley, P.A. The Corrosion–Wear Response of Cr–Ti Coatings. Wear 2007, 263, 679–690. [Google Scholar] [CrossRef]
- Ho, W.-F.; Chiang, T.-Y.; Wu, S.-C.; Hsu, H.-C. Evaluation of Low-Fusing Porcelain Bonded to Dental Cast Ti–Cr Alloys. J. Alloys Compd. 2009, 474, 505–509. [Google Scholar] [CrossRef]
- Chen, K.C.; Allen, S.M.; Livingston, J.D. Factors affecting the room-temperature mechanical properties of TiCr2-base Laves phase alloys. Mater. Sci. Eng. A 1998, 242, 162–173. [Google Scholar] [CrossRef] [Green Version]
- Mebed, A.; Koyama, T.; Miyazaki, T. Spinodal Decomposition Existence of the β Ti–Cr Binary Alloy: Computer Simulation of the Real Alloy System and Experimental Investigations. Comput. Mater. Sci. 1999, 14, 318–322. [Google Scholar] [CrossRef]
- Thomas, J.; Mogonye, J.E.; Mantri, S.A.; Choudhuri, D.; Banerjee, R.; Scharf, T.W. Additive Manufacturing of Compositionally Graded Laser Deposited Titanium-Chromium Alloys. Addit. Manuf. 2020, 33, 101132. [Google Scholar] [CrossRef]
- Zhang, F.; Li, C.; Yan, M.; He, J.; Yang, Y.; Yin, F. Microstructure and Nanomechanical Properties of Co-Deposited Ti-Cr Films Prepared by Magnetron Sputtering. Surf. Coatings Technol. 2017, 325, 636–642. [Google Scholar] [CrossRef]
- Banerjee, R.; Collins, P.C.; Fraser, H.L. Phase Evolution in Laser-Deposited Titanium-Chromium Alloys. Metall. Mater. Trans. A 2002, 33, 2129–2138. [Google Scholar] [CrossRef]
- Lou, B.Y.; Luo, K.C.; Xu, B. The Influence of Temperature on Cr-Ti Coating in Carbon Steel. Mater. Sci. Forum 2008, 575–578, 1157–1161. [Google Scholar] [CrossRef]
- Liu, G.; Wang, M.; Xu, J.; Huang, M.; Wang, C.; Fu, Y.; Lin, C.; Wu, J.; Levchenko, V.A. The Structure and Mechanical Properties of Cr-Based Cr-Ti Alloy Films. Mater. Res. Express 2022, 9, 016509. [Google Scholar] [CrossRef]
- Zhang, Y.Z.; Meacock, C.; Vilar, R. Laser Powder Micro-Deposition of Compositional Gradient Ti-Cr Alloy. Mater. Des. 2010, 31, 3891–3895. [Google Scholar] [CrossRef]
- Renk, T.J.; Buchheit, R.G.; Sorensen, N.R.; Cowell Senft, D.; Thompson, M.O.; Grabowski, K.S. Improvement of Surface Properties by Modification and Alloying with High-Power Ion Beams. Phys. Plasmas 1998, 5, 2144–2150. [Google Scholar] [CrossRef]
- Mei, X.X.; Sun, W.F.; Hao, S.Z.; Ma, T.C.; Dong, C. Surface Modification of High-Speed Steel by Intense Pulsed Ion Beam Irradiation. Surf. Coatings Technol. 2007, 201, 5072–5076. [Google Scholar] [CrossRef]
- Li, P.; Han, X.G.; Xin, J.P.; Zhu, X.P.; Lei, M.K. Wear and Corrosion Resistance of AZ31 Magnesium Alloy Irradiated by High-Intensity Pulsed Ion Beam. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2008, 266, 3945–3952. [Google Scholar] [CrossRef]
- Akamatsu, H.; Tanaka, H.; Yamanishi, T.; Egawa, S.; Yamasaki, T.; Miki, M.; Yatsuzuka, M. Increase of Si Solution Rate into Al Matrix by Repeated Irradiation of Intense Pulsed Ion Beam. Vacuum 2002, 65, 563–569. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, J.; Shen, J.; Liang, G.; Zhang, S.; Huang, W.; Xu, M.; Yu, X.; Yan, S.; Efimovich Remnev, G.; et al. Surface Vitrification of Iron and FeCuNbSiB Alloy Irradiated by Intense Pulsed Ion Beam. Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2019, 461, 226–231. [Google Scholar] [CrossRef]
- Remnev, G.E.; Isakov, I.F.; Opekounov, M.S.; Matvienko, V.M.; Ryzhkov, V.A.; Struts, V.K.; Grushin, I.I.; Zakoutayev, A.N.; Potyomkin, A.V.; Tarbokov, V.A.; et al. High Intensity Pulsed Ion Beam Sources and Their Industrial Applications. Surf. Coatings Technol. 1999, 114, 206–212. [Google Scholar] [CrossRef]
- Zhang, S.; Yu, X.; Zhang, J.; Shen, J.; Zhong, H.; Liang, G.; Xu, M.; Zhang, N.; Ren, J.; Kuang, S.; et al. Study of Phase Transformation and Surface Microstructure of Alumina Ceramic under Irradiation of Intense Pulsed Ion Beam. Vacuum 2021, 187, 110154. [Google Scholar] [CrossRef]
- Xu, M.; Kuang, S.; Yu, X.; Zhang, S.; Yan, S.; Remnev, G.E.; Le, X. Influence of Magnetic Field of a Radial Focusing External Magnetically Insulated Diode on Emission Behavior of Intense Pulsed Ion Beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2023, 537, 38–45. [Google Scholar] [CrossRef]
- Le, X.Y.; Zhao, W.J.; Yan, S.; Han, B.X. Numerical Analysis of Thermodynamical Process in the Thin Metal Samples Irradiated by IPIB. Curr. Appl. Phys. 2001, 1, 219–223. [Google Scholar] [CrossRef]
- Özkan, D.; Yilmaz, M.A.; Karakurt, D.; Szala, M.; Walczak, M.; Bakdemir, S.A.; Türküz, C.; Sulukan, E. Effect of AISI H13 Steel Substrate Nitriding on AlCrN, ZrN, TiSiN, and TiCrN Multilayer PVD Coatings Wear and Friction Behaviors at a Different Temperature Level. Materials 2023, 16, 1594. [Google Scholar] [CrossRef]
- Kucharska, B.; Czarniak, P.; Kulikowski, K.; Krawczyńska, A.; Rożniatowski, K.; Kubacki, J.; Szymanowski, K.; Panjan, P.; Sobiecki, J.R. Comparison Study of PVD Coatings: TiN/AlTiN, TiN and TiAlSiN Used in Wood Machining. Materials 2022, 15, 7159. [Google Scholar] [CrossRef]
- Park, S.S.; Shin, N.Y.; Lee, C.; Jeon, Y.; Chi, W.S.; Shul, Y.G. Au Coated Printed Circuit Board Current Collectors Using a Pulse Electroplating Method for Fuel Cell Applications. Energies 2021, 14, 4960. [Google Scholar] [CrossRef]
- Baltatu, M.S.; Vizureanu, P.; Sandu, A.V.; Munteanu, C.; Istrate, B. Microstructural Analysis and Tribological Behavior of Ti-Based Alloys with a Ceramic Layer Using the Thermal Spray Method. Coatings 2020, 10, 1216. [Google Scholar] [CrossRef]
- Rotich, S.K.; Kipkirui, N.G.; Lin, T.T.; Chen, S.H. Effect of Varying Plasma Powers on High-Temperature Applications of Plasma-Sprayed Al0.5CoCrFeNi2Ti0.5 Coatings. Materials 2022, 15, 7198. [Google Scholar] [CrossRef]
- Li, N.; Zhang, L.; Zhang, X.; Mei, X.; Qiang, J.; Li, X.; Wang, Y.; Pavlov, S.K.; Remnev, G.E.; Uglov, V.V. Study on the Damage of Zr63.5Cu23Al9Fe4.5 Amorphous and Crystalline Alloys Irradiated by High Intensity Pulsed Ion Beam. J. Alloys Compd. 2022, 923, 166411. [Google Scholar] [CrossRef]
- Akamatsu, H.; Tanihara, Y.; Ikeda, T.; Azuma, K.; Fujiwara, E.; Yatsuzuka, M. An Application of an Intense Pulsed Ion Beam to Metal Surface Modifications. In Proceedings of the 2000 13th International Conference on High-Power Particle Beams, BEAMS 2000, Nagaoka, Japan, 25–30 June 2000; pp. 94–97. [Google Scholar]
- Akamatsu, H.; Ikeda, T.; Azuma, K.; Fujiwara, E.; Yatsuzuka, M. Surface Treatment of Steel by Short Pulsed Injection of High-Power Ion Beam. Surf. Coatings Technol. 2001, 136, 269–272. [Google Scholar] [CrossRef]
- Yatsuzuka, M.; Yamasaki, T.; Uchida, H.; Hashimoto, Y. Amorphous Layer Formation on a Ni65Cr15P16B4 Alloy by Irradiation of an Intense Pulsed Ion Beam. Appl. Phys. Lett. 1995, 67, 206–207. [Google Scholar] [CrossRef]
- Podrebnjak, A.; Remnev, G.; Plotnikov, S. High-Power Ion-Beam-Induced Melting and Mixing in Deposited Structures. Mater. Sci. Eng. A 1989, 115, 175–179. [Google Scholar] [CrossRef]
- Yan, S.; Le, X.Y.; Zhao, W.J.; Shang, Y.J.; Wang, Y.; Xue, J. Study of Metal Film/Substrate Mixing by Intense Pulsed Ion Beam. Surf. Coat. Technol. 2007, 201, 4817–4821. [Google Scholar] [CrossRef]
- Bystritskii, V.; Garate, E.; Grigoriev, V.; Kharlov, A.; Lavernia, E.; Peng, X. The High Power Pulsed Ion Beam Mixing of a Titanium Layer with an Aluminum Substrate. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1999, 149, 61–66. [Google Scholar] [CrossRef]
- Isakova, Y.I.; Pushkarev, A.I.; Khaylov, I.P. The Energy Transfer in the TEMP-4M Pulsed Ion Beam Accelerator. Rev. Sci. Instrum. 2013, 84, 073302. [Google Scholar] [CrossRef]
- Stepanov, A.V.; Zhong, H.; Shijian, Z.; Xu, M.; Le, X.; Remnev, G.E. Study of the Propagation of an Intense Ion Beam to the Target. Vacuum 2022, 198, 110892. [Google Scholar] [CrossRef]
- Aktaev, N.E.; Remnev, G.E. Modeling of Carbon Penetration into Silicon Structure under the Action of Pulsed High-Intensity Ion Beam. Surf. Coat. Technol. 2016, 306, 54–57. [Google Scholar] [CrossRef]
- Remnev, G.E.; Uglov, V.V.; Shymanski, V.I.; Pavlov, S.K.; Kuleshov, A.K. Formation of Nanoscale Carbon Structures in the Surface Layer of Metals under the Impact of High Intensity Ion Beam. Appl. Surf. Sci. 2014, 310, 204–209. [Google Scholar] [CrossRef]
- Volkov, N.B.; Leivi, A.Y.; Talala, K.A.; Yalovets, A.P. Thermocapillary Convection in a Target Irradiated by an Intense Charged Particle Beam. Tech. Phys. 2010, 55, 484–490. [Google Scholar] [CrossRef]
- Pogrebnjak, A.D.; Bratushka, S.; Boyko, V.I.; Shamanin, I.V.; Tsvintarnaya, Y.V. A Review of Mixing Processes in Ta/Fe and Mo/Fe Systems Treated by High Current Electron Beams. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1998, 145, 373–390. [Google Scholar] [CrossRef]
- Zhang, J.; Yu, X.; Zhong, H.; Wei, B.; Qu, M.; Shen, J.; Zhang, Y.; Yan, S.; Zhang, G.; Zhang, X.; et al. The Ablation Mass of Metals by Intense Pulsed Ion Beam Irradiation. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2015, 365, 210–213. [Google Scholar] [CrossRef]
- Zhu, X.; Lei, M.K.; Suematsu, H.; Jiang, W.; Yatsui, K. Ablation and Dynamic Effects of Intense Pulsed Ion Beam on Metallic Materials. In Proceedings of the 15th International Conference on High-Power Particle Beams—Proceedings, BEAMS-2004, St. Petersburg, Russia, 18–23 July 2004; pp. 670–673. [Google Scholar]
- Wang, X.; Han, X.G.; Lei, M.K.; Zhang, J.S. Effect of High-Intensity Pulsed Ion Beams Irradiation on Corrosion Resistance of 316L Stainless Steel. Mater. Sci. Eng. A 2007, 457, 84–89. [Google Scholar] [CrossRef]
- Zhong, H.; Zhang, J.; Shen, J.; Yu, X.; Liang, G.; Cui, X.; Zhang, X.; Zhang, G.; Yan, S.; Le, X. Craters Forming Mechanism of High Speed Steel Irradiated by Intense Pulsed Ion Beam. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2017, 409, 298–301. [Google Scholar] [CrossRef]
- Shulov, V.A.; Nochovnaya, N.A. Crater Formation on the Surface of Metals and Alloys during High Power Ion Beam Processing. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 1999, 148, 154–158. [Google Scholar] [CrossRef]
- Yu, X.; Shen, J.; Zhong, H.; Zhang, J.; Yan, S.; Zhang, G.; Zhang, X.; Le, X. Thermo-Hydrodynamic Process Simulation of Craters Formation and Evolution on Metal Surfaces Caused by Intense Pulsed Ion Beams. Vacuum 2015, 120, 116–120. [Google Scholar] [CrossRef]
- Yan, S.; Le, X.Y.; Zhao, W.J.; Xue, J.M.; Wang, Y.G. A Possible Thermodynamic Mechanism of Craters Formation on Metal Surfaces Caused by Intense Pulsed Ion Beams. Surf. Coat. Technol. 2005, 193, 69–74. [Google Scholar] [CrossRef]
- Dong, Z.H.; Zhang, Z.; Liu, C.; Zhu, X.P.; Lei, M.K. Droplets from the Metal Surfaces Irradiated by a High-Intensity Pulsed Ion Beam. Appl. Surf. Sci. 2006, 253, 2557–2564. [Google Scholar] [CrossRef]
- Markov, A.; Yakovlev, E.; Shepel’, D.; Bestetti, M. Synthesis of a Cr-Cu Surface Alloy Using a Low-Energy High-Current Electron Beam. Results Phys. 2019, 12, 1915–1924. [Google Scholar] [CrossRef]
- Kagawa, A.; Ohta, Y.; Nakayama, K. Mechanism of Crack Generation in Carbide Surface Layer of Laser-Clad Iron Alloys. Mater. Trans. 2002, 43, 1261–1265. [Google Scholar] [CrossRef] [Green Version]
- Breech, J.A.; Lucisano, L.J.; Franz, R.M. Investigation into Substrate Cracking of a Film-coated Bilayered Tablet. J. Pharm. Pharmacol. 1988, 40, 282–283. [Google Scholar] [CrossRef]
- Ericksen, R.H.; Taggart, R.; Polonis, D.H. The Martensite Transformation in Ti-Cr Binary Alloys. Acta Metall. 1969, 17, 553–564. [Google Scholar] [CrossRef]
- Hsu, H.C.; Wu, S.C.; Chiang, T.Y.; Ho, W.F. Structure and Grindability of Dental Ti-Cr Alloys. J. Alloys Compd. 2009, 476, 817–825. [Google Scholar] [CrossRef]
- Cheng, Y.T.; Li, Z.; Cheng, C.M. Scaling Relationships for Indentation Measurements. Philos. Mag. A Phys. Condens. Matter Struct. Defects Mech. Prop. 2002, 82, 1821–1829. [Google Scholar] [CrossRef]
- Wu, Y.Q.; Yan, M.F. Plasticity Characterization of the Modified Layer Produced by Plasma Nitrocarburizing of Nanocrystallized 18Ni Maraging Steel. Vacuum 2011, 86, 119–123. [Google Scholar] [CrossRef]
- Leyland, A.; Matthews, A. On the Significance of the H/E Ratio in Wear Control: A Nanocomposite Coating Approach to Optimised Tribological Behaviour. Wear 2000, 246, 1–11. [Google Scholar] [CrossRef]
- Adamiak, S.; Bochnowski, W.; Dziedzic, A.; Szyller, Ł.; Adamiak, D. Characteristics of the Structure, Mechanical, and Tribological Properties of a Mo-Mo2n Nanocomposite Coating Deposited on the Ti6al4v Alloy by Magnetron Sputtering. Materials 2021, 14, 6819. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Ni, Z.; Ye, F. Effect of Carbon Content on Structure and Properties of WCN Coatings Prepared by RF Magnetron Sputtering. Surf. Coat. Technol. 2016, 287, 129–137. [Google Scholar] [CrossRef]
- Xu, J.; Ju, H.; Yu, L. Influence of Silicon Content on the Microstructure, Mechanical and Tribological Properties of Magnetron Sputtered Ti-Mo-Si-N Films. Vacuum 2014, 110, 47–53. [Google Scholar] [CrossRef]
- Ni, W.; Cheng, Y.T.; Lukitsch, M.J.; Weiner, A.M.; Lev, L.C.; Grummon, D.S. Effects of the Ratio of Hardness to Young’s Modulus on the Friction and Wear Behavior of Bilayer Coatings. Appl. Phys. Lett. 2004, 85, 4028–4030. [Google Scholar] [CrossRef]
- Ou, Y.X.; Lin, J.; Tong, S.; Che, H.L.; Sproul, W.D.; Lei, M.K. Wear and Corrosion Resistance of CrN/TiN Superlattice Coatings Deposited by a Combined Deep Oscillation Magnetron Sputtering and Pulsed Dc Magnetron Sputtering. Appl. Surf. Sci. 2015, 351, 332–343. [Google Scholar] [CrossRef]
Sample | E (GPa) | H (GPa) | ηp | H/E | H3/E2 |
---|---|---|---|---|---|
original, pure Ti | 2.3 | 125.5 | 0.887 | 0.018 | 0.0007 |
irradiated, 1 pulse | 3.8 | 135.9 | 0.845 | 0.028 | 0.0029 |
irradiated, 5 pulses | 4.2 | 114.6 | 0.803 | 0.036 | 0.0055 |
irradiated, 20 pulses | 4.8 | 100.3 | 0.714 | 0.048 | 0.0111 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, M.; Yu, X.; Zhang, S.; Yan, S.; Tarbokov, V.; Remnev, G.; Le, X. Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing. Materials 2023, 16, 3028. https://doi.org/10.3390/ma16083028
Xu M, Yu X, Zhang S, Yan S, Tarbokov V, Remnev G, Le X. Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing. Materials. 2023; 16(8):3028. https://doi.org/10.3390/ma16083028
Chicago/Turabian StyleXu, Mofei, Xiang Yu, Shijian Zhang, Sha Yan, Vladislav Tarbokov, Gennady Remnev, and Xiaoyun Le. 2023. "Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing" Materials 16, no. 8: 3028. https://doi.org/10.3390/ma16083028
APA StyleXu, M., Yu, X., Zhang, S., Yan, S., Tarbokov, V., Remnev, G., & Le, X. (2023). Microstructure Formation and Mechanical Properties of Metastable Titanium-Based Gradient Coating Fabricated via Intense Pulse Ion Beam Melt Mixing. Materials, 16(8), 3028. https://doi.org/10.3390/ma16083028