The Rehbinder Effect in Testing Saturated Carbonate Geomaterials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Materials
2.2. Description of Methods
3. Results and Discussion
3.1. Testing Dry and Saturated Samples for Uniaxial Compressive Strength
3.2. Testing Dry and Saturated Samples for the Tensile Strength
4. Conclusions
- (1)
- The uniaxial compressive strength and the indirect tensile strength of Bashkir limestone are significantly reduced when the sample is fully saturated with distilled water. In comparison with dry samples, when saturated with water, the uniaxial compressive strength decreased from 118.7 to 97.0 MPa, and the tensile strength decreased from 7.43 to 5.53 MPa.
- (2)
- The ratio of the indirect tensile strength to the uniaxial compressive strength decreased by 9% at full saturation of samples with distilled water compared to air-dried samples, which is associated with the Rehbinder effect, which is especially strong in a polycrystalline rock with microcracks such as limestone, and in the presence of tensile stresses.
- (3)
- The research results confirmed the results of previous studies, according to which the strength of carbonate rocks can significantly decrease when they are saturated with water, and also expanded them in terms of explaining the reason for this decrease.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bao, T.; Hashiba, K.; Fukui, K. Effect of Water Saturation on the Brazilian Tension Test of Rocks. Mater. Trans. 2021, 62, 48–56. [Google Scholar] [CrossRef]
- Van Eeckhout, E.M. The mechanisms of strength reduction due to moisture in coal mine shales. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 61–67. [Google Scholar] [CrossRef]
- Hashiba, K.; Fukui, K.; Kataoka, M. Effects of water saturation on the strength and loading-rate dependence of andesite. Int. J. Rock Mech. Min. Sci. 2019, 117, 142–149. [Google Scholar] [CrossRef]
- Demarco, M.M.; Jahns, E.; Rüdrich, J.; Oyhantcabal, P.; Siegesmund, S. The impact of partial water saturation on rock strength: An experimental study on sandstone. Z. Dtsch. Ges. Geowiss. 2007, 158, 869–882. [Google Scholar] [CrossRef]
- Risnes, R.; Madland, M.V.; Hole, M.; Kwabiah, N.K. Water weakening of chalk—Mechanical effects of water–glycol mixtures. J. Pet. Sci. Eng. 2005, 48, 21–36. [Google Scholar] [CrossRef]
- Zhou, Z.; Cai, X.; Cao WLi, X.; Xiong, C. Influence of Water Content on Mechanical Properties of Rock in Both Saturation and Drying Processes. Rock Mech. Rock Eng. 2016, 49, 3009–3025. [Google Scholar] [CrossRef]
- Yasar, S. Long term wetting characteristics and saturation induced strength reduction of some igneous rocks. Environ. Earth Sci. 2020, 79, 353. [Google Scholar] [CrossRef]
- Lin, Y.X.; Lai, Z.S.; Ma, J.J.; Huang, L.C.; Lei, M.F. A FDEM approach to study mechanical and fracturing responses of geo-materials with high inclusion contents using a novel reconstruction strategy. Eng. Fract. Mech. 2023, 282, 109171. [Google Scholar] [CrossRef]
- Huang, S.; Huang, L.C.; Lai, Z.S.; Zhao, J.D. Morphology characterization and discrete element modeling of coral sand with intraparticle voids. Eng. Geol. 2023, 315, 107023. [Google Scholar] [CrossRef]
- Yang, G.C.; Yang, L.; Kwok, C.Y.; Sobrai, Y.D. Efficient lattice Boltzmann simulation of free-surface granular flows with μ(I)-rheology. J. Comput. Phys. 2023, 479, 111956. [Google Scholar] [CrossRef]
- Rutter, E.H. The influence of temperature, strain rate and interstitial water in the experimental deformation of calcite rocks. Tectonophysics 1974, 22, 311–334. [Google Scholar] [CrossRef]
- Vutukuri, V.S. The effect of liquids on the tensile strength of limestone. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1974, 11, 27–29. [Google Scholar] [CrossRef]
- Blokhin, D.I.; Ivanov, P.N.; Dudchenko, O.L. Experimental study of thermomechanical effects in water-saturated limestones during their deformation. J. Min. Inst. 2021, 247, 3–11. [Google Scholar] [CrossRef]
- Michalopoulos, L.P.; Triandafilidis, G.E. Influence of Water on Hardness, Strength and Compressibility of Rock. Environ. Eng. Geosci. 1976, xiii, 1–22. [Google Scholar] [CrossRef]
- West, G. Effect of suction on the strength of rock. Q. J. Eng. Geol. Hydrogeol. 1994, 27, 51–56. [Google Scholar] [CrossRef]
- Ciantia, M.O.; Castellanza, R.; Crosta, G.B.; Hueckel, T. Effects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks. Eng. Geol. 2015, 184, 1–18. [Google Scholar] [CrossRef]
- Ji, X.; Zhou, W.; Chen, Y.; Ma, G. Generation of the Polycrystalline Rock Microstructure by a Novel Voronoi Grain-Based Model With Particle Growth. In Proceedings of the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Seattle, WA, USA, 17–20 June 2018. ARMA-2018-388. [Google Scholar]
- Traskin, V.Y. Rehbinder effect in tectonophysics. Izv. Phys. Solid Earth 2009, 45, 952–963. [Google Scholar] [CrossRef]
- Rehbinder, P.A.; Lichtman, V. Effect of surface active media on strain and rupture in solids. Proc. Second. Int. Congr. Surf. Act. 1957, 3, 563–580. [Google Scholar]
- Rehbinder, P.A. On the Influence of Changes in the Surface Energy on the Cleavage, Hardness and Other Properties of Crystals, in P. A. Rehbinder. Selected Transactions. Physicochem. Mech. 1979, 2, 1–142. [Google Scholar]
- Rehbinder, P.A.; Shreiner, L.A.; Zhigach, K.F. The Hardness Reducers in Drilling,” in P.A. Rehbinder. Selected Transactions. Physicochem. Mech. 1979, 2, 270–320. [Google Scholar]
- Yadav, S.; Hagan, P. The effect of water saturation in sandstone and limestone samples on disc cutting performances. In Proceedings of the 17th Coal Operators’ Conference, Mining Engineering, University of Wollongong, Wollongong, NSW, Australia, 8–10 February 2017; Naj, A., Bob, K., Eds.; University of Wollongong: Wollongong, NSW, Australia; pp. 255–261. [Google Scholar]
- Boozer, G.D.; Hiller, K.H.; Serdengecti, S. Effects of pore fluids on the deformation behavior of rocks subjected to triaxial compression. In Proceedings of the 5th Symposium on Rock Mechanics, University of Minnesota, Minneapolis, MN, USA, May 1962; pp. 579–626. [Google Scholar]
- Kvamme, B.; Kuznetsova, T.; Uppstad, D. Modelling excess surface energy in dry and wetted calcite systems. J. Math. Chem. 2009, 46, 756–762. [Google Scholar] [CrossRef]
- Vásárhelyi, B.; Davarpanah, M. Influence of Water Content on the Mechanical Parameters of the Intact Rock and Rock Mass. Period. Polytech. Civ. Eng. 2018, 62, 1060–1066. [Google Scholar] [CrossRef]
- ASTM D4543-19; Standard Practices for Preparing Rock Core as Cylindrical Test Specimens and Verifying Conformance to Dimensional and Shape Tolerances. ASTM International: West Conshohocken, PA, USA, 2019; 13p. [CrossRef]
- Bieniawski, Z.T.; Hawkes, I. ISRM Suggested Methods for Determining Tensile Strength of Rock Materials Part 2: Suggested Method for determining indirect tensile strength by the Brazil Test. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 99–103. [Google Scholar] [CrossRef]
- American Petroleum Institute. Recommended Practices for Core Analysis. Recommended Practice 40, 2nd ed.; American Petroleum Institute: Washington, DC, USA, 1998. [Google Scholar]
- ASTM D7012-04; Standard Test Method for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures. ASTM International: West Conshohocken, PA, USA, 2017; 8p. [CrossRef]
- Basu, A.; Mishra, D.A.; Roychowdhury, K. Rock failure modes under uniaxial compression, Brazilian, and point load tests. Bull. Eng. Geol. Environ. 2013, 72, 457–475. [Google Scholar] [CrossRef]
- Wen, W.; Shiwei, Z.; Shen, W.; Dongyin, L.; Wei, W.; Yuxi, H.; Heng, W. Mechanical behavior of limestone in natural and forced saturation states under uniaxial loading: An experimental study. Geomech. Geophys. Geo-Energy Geo-Resour. 2021, 7, 65. [Google Scholar] [CrossRef]
- Sokur, N.; Biletskyy VSokur, L.; Bozyk, D.; Sokur, I. Investigation of the process of crushing solid materials in the centrifugal disintegrators. East. -Eur. J. Enterp. Technol. 2016, 3, 34–40. [Google Scholar] [CrossRef]
- Rehbinder, P.A.; Shchukin, E.D. Surface phenomena in solids during deformation and fracture processes. Prog. Surf. Sci. 1972, 3, 97–188. [Google Scholar] [CrossRef]
- Bergsaker, A.S.; Røyne, A.; Ougier-Simonin, A.; Aubry, J.; Renard, F. The effect offluid composition, salinity, and acidity on subcriticalcrack growth in calcite crystals. J. Geophys. Res. Solid Earth 2016, 121, 1631–1651. [Google Scholar] [CrossRef] [Green Version]
- Voigtländer, A.; Leith, K.; Krautblatter, M. Subcritical crack growth andprogressive failure in Carrara marbleunder wet and dry conditions. J. Geophys. Res. Solid Earth 2018, 123, 3780–3798. [Google Scholar] [CrossRef]
- Riabokon, E.; Turbakov, M.; Popov, N.; Kozhevnikov, E.; Poplygin, V.; Guzev, M. Study of the Influence of Nonlinear Dynamic Loads on Elastic Modulus of Carbonate Reservoir Rocks. Energies 2021, 14, 8559. [Google Scholar] [CrossRef]
- Guzev, M.A.; Kozhevnikov, E.V.; Turbakov, M.S.; Riabokon, E.P.; Poplygin, V.V. Experimental investigation of the change of elastic moduli of clastic rocks under nonlinear loading. Int. J. Eng. Trans. C Asp. 2021, 34, 750–755. [Google Scholar] [CrossRef]
- Guzev, M.A.; Riabokon, E.P.; Turbakov, M.S.; Kozhevnikov, E.V.; Poplygin, V.V. Study on the effect of nonlinear dynamic loads on the elastic modulus of rocks during hydrocarbon fields development. In Proceedings of the 7th Scientific Exploration Conference—Tyumen 2021: Natural Resources Management as a Cross-Functional Process, Tyumen, Russia, 22–26 March 2021. 5p. [Google Scholar] [CrossRef]
- Riabokon, E.; Poplygin, V.; Turbakov, M.; Kozhevnikov, E.; Kobiakov, D.; Guzev, M.; Wiercigroch, M. Nonlinear Young’s Modulus of New Red Sandstone: Experimental Studies. Acta Mech. Solida Sin. 2021, 34, 989–999. [Google Scholar] [CrossRef]
Sample | Diameter , mm | Length , mm | , kN | , MPa | , MPa |
---|---|---|---|---|---|
2/3 | 25.4 | 50.8 | 53.8 | 106.2 | 118.7 |
2/5 | 25.4 | 50.8 | 58.6 | 115.7 | |
2/10 | 25.4 | 50.8 | 74.5 | 147.1 | |
2/11 | 25.4 | 50.8 | 69.3 | 136.9 | |
2/20 | 25.4 | 50.8 | 44.3 | 87.6 | |
2/9 | 25.4 | 50.8 | 66.2 | 130.6 | 97.0 |
2/12 | 25.4 | 50.8 | 36.6 | 72.3 | |
2/18 | 25.4 | 50.8 | 31.7 | 62.7 | |
2/32 | 25.4 | 50.8 | 46.8 | 92.4 | |
2/45 | 25.4 | 50.8 | 64.3 | 126.9 |
Sample | Diameter , mm | Thickness , mm | , kN | , MPa | , MPa |
---|---|---|---|---|---|
2/3/1 | 25.4 | 12.7 | 3.9 | 7.8 | 7.4 |
2/4/1 | 25.4 | 12.7 | 4.7 | 9.3 | |
2/5/1 | 25.4 | 12.7 | 3.9 | 7.8 | |
2/6/1 | 25.4 | 12.7 | 2.4 | 4.8 | |
2/7/1 | 25.4 | 12.7 | 4.3 | 8.5 | |
2/8/1 | 25.4 | 12.7 | 3.2 | 6.4 | |
2/3/2 | 25.4 | 12.7 | 2.5 | 4.9 | 5.5 |
2/4/2 | 25.4 | 12.7 | 3.8 | 7.6 | |
2/5/2 | 25.4 | 12.7 | 2.6 | 5.1 | |
2/6/2 | 25.4 | 12.7 | 1.4 | 2.9 | |
2/7/2 | 25.4 | 12.7 | 2.9 | 5.7 | |
2/8/2 | 25.4 | 12.7 | 3.5 | 7.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Riabokon, E.; Turbakov, M.; Kozhevnikov, E.; Poplygin, V.; Jing, H. The Rehbinder Effect in Testing Saturated Carbonate Geomaterials. Materials 2023, 16, 3024. https://doi.org/10.3390/ma16083024
Riabokon E, Turbakov M, Kozhevnikov E, Poplygin V, Jing H. The Rehbinder Effect in Testing Saturated Carbonate Geomaterials. Materials. 2023; 16(8):3024. https://doi.org/10.3390/ma16083024
Chicago/Turabian StyleRiabokon, Evgenii, Mikhail Turbakov, Evgenii Kozhevnikov, Vladimir Poplygin, and Hongwen Jing. 2023. "The Rehbinder Effect in Testing Saturated Carbonate Geomaterials" Materials 16, no. 8: 3024. https://doi.org/10.3390/ma16083024
APA StyleRiabokon, E., Turbakov, M., Kozhevnikov, E., Poplygin, V., & Jing, H. (2023). The Rehbinder Effect in Testing Saturated Carbonate Geomaterials. Materials, 16(8), 3024. https://doi.org/10.3390/ma16083024