Effect of Final Thermomechanical Treatment on the Mechanical Properties and Microstructure of T Phase Hardened Al-5.8Mg-4.5Zn-0.5Cu Alloy
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Hardness and Tensile Properties under the T6 Treatment
3.2. Hardness and Tensile Properties under the FTMT Process
3.3. Microstructural Characteristics
4. Discussion
4.1. The Microstructure and Mechanical Properties of Al-Mg-Zn-Cu Alloy under FTMT Process
4.2. The Practical FTMT Process
5. Conclusions
- (1)
- The as-cold rolled aluminum alloy samples were subjected sequentially to solid solution treatment, pre-deformation, and two-stage aging treatment. Vickers hardness was measured during the final aging process under various parameters. The maximum hardness achieved is around 188 HV0.2, with an evident increase compared with the T6 process.
- (2)
- Tensile test results are consistent with the hardness measurements. The ultimate and yield tensile strength are increased effectively by the optimized FTMT process, while the ductility is adversely affected to a small extent. The best properties achieved are 603.7 MPa, 549.0 MPa, and 11.36% for the tensile strength, yield strength, and elongation, respectively.
- (3)
- The phase constituent of the FTMT sample comprises four phases: aluminum alloy matrix, GP zone, coherent T″ phase, and semi-coherent T′ phase, while the precipitated particles at the T6 state consist of only GP zone and T″ phase.
- (4)
- The typical morphology of dislocations for the FTMT sample comprises mainly dislocation tangles and isolated dislocations. The mean size and volume fraction of precipitated phases is increased under the FTMT process compared with the T6 process. Dislocation strengthening together with enhanced precipitation strengthening account for the improved mechanical performance of FTMT samples.
- (5)
- The process parameter variation has limited effects on the mechanical properties of the Al-Mg-Zn-Cu alloy, which facilitates the application in the industrial production condition.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ma, Q.; Zhang, D.; Zhuang, L.; Zhang, J. Intergranular corrosion resistance of Zn modified 5××× series Al alloy during retrogression and re-aging treatment. Mater. Charact. 2018, 144, 264–273. [Google Scholar] [CrossRef]
- Marlaud, T.; Malki, B.; Henon, C.; Deschamps, A.; Baroux, B.J. Relationship between alloy composition, microstructure and exfoliation corrosion in Al–Zn–Mg–Cu alloys. Corros. Sci. 2011, 53, 3139–3149. [Google Scholar] [CrossRef]
- Guo, M.X.; Du, J.Q.; Zheng, C.H.; Zhang, J.; Zhuang, L. Influence of Zn contents on precipitation and corrosion of Al-Mg-Si-Cu-Zn alloys for automotive applications. J. Alloys Compd. 2019, 778, 256–270. [Google Scholar] [CrossRef]
- Ding, L.; Jia, Z.; Nie, J.-F.; Weng, Y.; Cao, L.; Chen, H.; Wu, X.; Liu, Q. The structural and compositional evolution of precipitates in Al-Mg-Si-Cu alloy. Acta Mater. 2018, 145, 437–450. [Google Scholar] [CrossRef]
- Yang, X.B.; Chen, J.H.; Liu, J.Z.; Qin, F.; Xie, J.; Wu, C. A high-strength AlZnMg alloy hardened by the T-phase precipitates. J. Alloys Compd. 2014, 610, 69–73. [Google Scholar] [CrossRef]
- Du, Q.; Poolew, J.; Wellsm, A. A mathematical model coupled to CALPHAD to predict precipitation kinetics for multicomponent aluminum alloys. Acta Mater. 2012, 60, 3830–3839. [Google Scholar] [CrossRef]
- Cheng, S.; Zhao, Y.H.; Zhu, Y.T.; Ma, E. Optimizing the strength and ductility of fine structured 2024 Al alloy by nano-precipitation. Acta Mater. 2007, 55, 5822–5832. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, D.; Ding, Q.; Zhang, J.; Zhuang, L. Solute clustering and precipitation of Al-5.1Mg-0.15Cu-xZn alloy. Mater. Sci. Eng. A 2019, 759, 465–478. [Google Scholar] [CrossRef]
- Huo, W.; Hou, L.; Zhang, Y.; Zhang, J. Warm formability and post-forming microstructure/property of high-strength AA 7075-T6 Al alloy. Mater. Sci. Eng. A 2016, 675, 44–54. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, D.; Zuo, J.; Hou, S.; Zhuang, L.; Zhang, J. The effect of grain boundary character evolution on the intergranular corrosion behavior of advanced Al-Mg-3wt%Zn alloy with Mg variation. Mater. Charact. 2018, 146, 47–54. [Google Scholar] [CrossRef]
- Lee, B.-H.; Kim, S.-H.; Park, J.-H.; Kim, H.-W.; Lee, J.-C. Role of Mg in simultaneously improving the strength and ductility of Al–Mg alloys. Mater. Sci. Eng. A 2016, 657, 115–122. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, D.; He, Z.; Zhuang, L.; Zhang, J. Enhanced and accelerated age hardening response of Al-5.2Mg-0.45Cu (wt%) alloy with Zn addition. Mater. Sci. Eng. A 2016, 666, 34–42. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, H.; Wu, Z.; Wang, D.; Li, B.; Cui, J. Effects of Ag on the age hardening response and intergranular corrosion resistance of Al-Mg alloys. Mater. Charact. 2019, 147, 84–92. [Google Scholar] [CrossRef]
- Yan, J.; Heckman, N.M.; Velasco, L.; Hodge, A.M. Improve sensitization and corrosion resistance of an Al-Mg alloy by optimization of grain boundaries. Sci. Rep. 2016, 6, 26870. [Google Scholar] [CrossRef] [Green Version]
- Medrano, S.; Zhao, H.; De Geuser, F.; Gault, B.; Stephenson, L.; Deschamps, A.; Ponge, D.; Raabe, D.; Sinclair, C. Cluster hardening in Al-3Mg triggered by small Cu additions. Acta Mater. 2018, 161, 12–20. [Google Scholar] [CrossRef]
- Zhang, H.; Nan, Y.; Guo, C.; Cui, J. Age hardening and intergranular corrosion behavior of new type Al-4.5Mg-0.6Zn-0.5Cu-XAg(wt%) alloy. J. Alloys Compd. 2022, 910, 164767. [Google Scholar] [CrossRef]
- Li, C.; Sha, G.; Gun, B.; Xia, J.H.; Liu, X.F.; Wu, Y.Y.; Birbilis, N.; Ringer, S.P. Enhanced age-hardening response of Al–4Mg–1Cu (wt.%) microalloyed with Ag and Si. Scr. Mater. 2013, 68, 857–860. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, H.; Zou, J.; Li, B.; Cui, J. Effects of pre-treatment combining with aging on the microstructures and mechanical properties of Al-Mg-Ag alloys. Mater. Sci. Eng. A 2019, 740–741, 82–91. [Google Scholar] [CrossRef]
- Deng, Y.; Yin, Z.; Zhao, K.; Duan, J.; Hu, J.; He, Z. Effects of Sc and Zr microalloying additions and aging time at 120 °C on the corrosion behaviour of an Al–Zn–Mg alloy. Corros. Sci. 2012, 65, 288–298. [Google Scholar] [CrossRef]
- Kumar, N.; Mishrar, S. Additivity of strengthening mechanisms in ultrafine grained Al–Mg–Sc alloy. Mater. Sci. Eng. A 2013, 580, 175–183. [Google Scholar] [CrossRef]
- Hou, S.; Liu, P.; Zhang, D.; Zhang, J.; Zhuang, L. Precipitation hardening behavior and microstructure evolution of Al–5.1Mg–0.15Cu alloy with 3.0Zn (wt%) addition. J. Mater. Sci. 2018, 53, 3846–3861. [Google Scholar] [CrossRef]
- Ding, Q.; Zhang, D.; Pan, Y.; Hou, S.; Zhuang, L.; Zhang, J. Strengthening mechanism of age-hardenable Al–xMg–3Zn alloys. Mater. Sci. Technol. 2019, 35, 1071–1080. [Google Scholar] [CrossRef]
- Meng, C.; Zhang, D.; Cui, H.; Zhuang, L.; Zhang, J. Mechanical properties, intergranular corrosion behavior and microstructure of Zn modified Al–Mg alloys. J. Alloys Compd. 2014, 617, 925–932. [Google Scholar] [CrossRef]
- Bigot, A.; Auger, P.; Chambreland, S.; Blavette, D.; Reeves, A. Atomic Scale Imaging and Analysis of T′ Precipitates in Al-Mg-Zn Alloys. Microsc. Microanal. Microstruct. 1997, 8, 103–113. [Google Scholar] [CrossRef]
- Hou, S.; Zhang, D.; Pan, Y.; Ding, Q.; Long, W.; Zhang, J.; Zhuang, L. Dependence of microstructure, mechanical properties, and inter-granular corrosion behavior of Al-5.1Mg-3.0Zn-0.15Cu alloys with high temperature pre-treatment. Mater. Charact. 2020, 168, 110512. [Google Scholar] [CrossRef]
- Wang, Y.L.; Jiang, H.C.; Li, Z.; Yan, D.; Zhang, D.; Rong, L. Two-stage double peaks ageing and its effect on stress corrosion cracking susceptibility of Al-Zn-Mg alloy. J. Mater. Sci. Technol. 2018, 34, 1250–1257. [Google Scholar] [CrossRef]
- Pan, Y.; Zhang, D.; Liu, H.; Zhuang, L.; Zhang, J. Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(-Cu) alloys. J. Alloys Compd. 2021, 853, 157199. [Google Scholar] [CrossRef]
- Stemper, L.; Tunes, M.A.; Tosone, R.; Uggowitzer, P.J.; Pogatscher, S. On the potential of aluminum crossover alloys. Prog. Mater. Sci. 2022, 124, 100873. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, D.; Wang, X.; Ma, Q.; Zhuang, L.; Zhang, J. Effects of Cu addition on the precipitation hardening response and intergranular corrosion of Al-5.2Mg-2.0Zn (wt.%) alloy. Mater. Charact. 2016, 122, 177–182. [Google Scholar] [CrossRef]
- Huo, W.T.; Shi, J.T.; Hou, L.G.; Zhang, J.S. An improved thermo-mechanical treatment of high-strength Al–Zn–Mg–Cu alloy for effective grain refinement and ductility modification. J. Mater. Process. Technol. 2017, 239, 303–314. [Google Scholar] [CrossRef]
- Engler, O. Control of texture and earing in aluminium alloy AA 3105 sheet for packaging applications. Mater. Sci. Eng. A 2012, 538, 69–80. [Google Scholar] [CrossRef]
- Zuo, J.; Hou, L.; Shi, J.; Cui, H.; Zhuang, L.; Zhang, J. Effect of deformation induced precipitation on dynamic aging process and improvement of mechanical/corrosion properties AA7055 aluminum alloy. J. Alloys Compd. 2017, 708, 1131–1140. [Google Scholar] [CrossRef]
- Cao, C.; Zhang, D.; Zhuang, L.; Zhang, J. Improved age-hardening response and altered precipitation behavior of Al-5.2Mg-0.45Cu-2.0Zn (wt%) alloy with pre-aging treatment. J. Alloys Compd. 2017, 691, 40–43. [Google Scholar] [CrossRef]
- Cheng, C.; Di, Z.; Linzhong, Z.; Jishan, Z.; Jiabin, L. Effect of Pre-aging Treatment on Room Temperature Stability of Al-5.2Mg-0.45Cu-2.0Zn Alloy Sheet. Rare Met. Mater. Eng. 2020, 49, 1166–1170. [Google Scholar]
- ASTM E8/E8M-11; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2012.
- Pan, Y.; Zhang, D.; Liu, H.; Zhang, Z.; Li, H.; Zhuang, L.; Zhang, J. Reducing welding hot cracking of high-strength novel Al–Mg–Zn–Cu alloys based on the prediction of the T-shaped device. Sci. Technol. Weld. Join. 2020, 25, 483–489. [Google Scholar] [CrossRef]
- Aruga, Y.; Kozuka, M.; Takaki, Y.; Sato, T. Effects of natural aging after pre-aging on clustering and bake-hardening behavior in an Al–Mg–Si alloy. Scr. Mater. 2016, 116, 82–86. [Google Scholar] [CrossRef] [Green Version]
- Clausen, B.; Lorentzen, T.; Leffers, T. Self-consistent modelling of the plastic deformation of f.c.c. polycrystals and its implications for diffraction measurements of internal stresses. Acta Mater. 1998, 46, 3087–3098. [Google Scholar] [CrossRef]
- Liu, C.H.; Li, X.L.; Wang, S.; Chen, J.; Teng, Q.; Gu, Y. A tuning nano-precipitation approach for achieving enhanced strength and good ductility in Al alloys. Mater. Des. 2014, 54, 144–148. [Google Scholar] [CrossRef]
Mg | Zn | Cu | Mn | Cr | Ti | Zr | Al | Zn/Mg | (Zn + Cu)/Mg |
---|---|---|---|---|---|---|---|---|---|
5.8 | 4.5 | 0.50 | 0.10 | 0.04 | 0.06 | 0.12 | Balance | 0.78 | 0.86 |
Sample | Solid Solution Treatment | Pre-Aging | Final Aging |
---|---|---|---|
T6-a | 480 °C/30 min | 90 °C/24 h | 140 °C/25 h |
T6-b | 480 °C/30 min | 90 °C/48 h | 140 °C/13 h |
Sample | Pre-Deformation Extent | Pre-Aging | Final Aging |
---|---|---|---|
FTMT-9-14-a | 10% | 90 °C-24 h | 140 °C-10 h |
FTMT-9-14-b | 5% | 90 °C-48 h | 140 °C-10 h |
FTMT-8-14-a | 10% | 80 °C-72 h | 140 °C-10 h |
FTMT-8-14-b | 5% | 80 °C-72 h | 140 °C-16 h |
FTMT-9-12-a | 10% | 90 °C-24 h | 120 °C-18 h |
FTMT-9-12-b | 10% | 90 °C-48 h | 120 °C-16 h |
Sample | r (nm) | f (%) | Δσp (MPa) |
---|---|---|---|
T6 | 3.32 | 0.762453 | 379.1852 |
FTMT | 3.50 | 0.822041 | 404.2561 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, K.; Xu, J.; Zhang, D.; Zhang, A.; Su, G.; Zhang, J. Effect of Final Thermomechanical Treatment on the Mechanical Properties and Microstructure of T Phase Hardened Al-5.8Mg-4.5Zn-0.5Cu Alloy. Materials 2023, 16, 3062. https://doi.org/10.3390/ma16083062
Tao K, Xu J, Zhang D, Zhang A, Su G, Zhang J. Effect of Final Thermomechanical Treatment on the Mechanical Properties and Microstructure of T Phase Hardened Al-5.8Mg-4.5Zn-0.5Cu Alloy. Materials. 2023; 16(8):3062. https://doi.org/10.3390/ma16083062
Chicago/Turabian StyleTao, Kai, Jingbo Xu, Di Zhang, Aimin Zhang, Guang Su, and Jishan Zhang. 2023. "Effect of Final Thermomechanical Treatment on the Mechanical Properties and Microstructure of T Phase Hardened Al-5.8Mg-4.5Zn-0.5Cu Alloy" Materials 16, no. 8: 3062. https://doi.org/10.3390/ma16083062
APA StyleTao, K., Xu, J., Zhang, D., Zhang, A., Su, G., & Zhang, J. (2023). Effect of Final Thermomechanical Treatment on the Mechanical Properties and Microstructure of T Phase Hardened Al-5.8Mg-4.5Zn-0.5Cu Alloy. Materials, 16(8), 3062. https://doi.org/10.3390/ma16083062