Biocomposite Foams with Multimodal Cellular Structures Based on Cork Granulates and Microwave Processed Egg White Proteins
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The Foaming Process
3.2. Foam Morphology
3.3. Density and Mechanical Properties of Foams
3.4. Thermogravimetric Analysis
3.5. Flammability Tests
4. Conclusions
- (1)
- Biocomposite foams were characterized by a bimodal cell size distribution: an open cell EWP matrix with cell size between 100 and 500 µm cork and granulates with closed cells with a cell size in the range of 30–50 µm.
- (2)
- The mechanical properties of the biocomposites analyzed in this work were mainly affected by the volumetric fraction of the foamed matrix. The lower amount of EWP resulted in materials with a higher elastic modulus and compression strength due to the presence of cork granulates partially packed in the EWP matrix.
- (3)
- Thermal stability and flame resistance of the samples were improved by the addition of 13 wt.% of Al(OH)3 and 27 wt.% CaCO3. A synergistic charring effect, due to the cork along with the presence of both of the inorganic fillers in a protein matrix, was observed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Silva, S.P.; Sabino, M.A.; Fernandes, E.M.; Correlo, V.M.; Boesel, L.F.; Reis, R.L. Cork: Properties, Capabilities and Applications. Int. Mater. Rev. 2005, 50, 345–365. [Google Scholar] [CrossRef] [Green Version]
- Cork Quality Council. Available online: https://www.corkqc.com/pages/industry-statistics (accessed on 17 March 2023).
- Matos, A.M.; Nunes, S.; Sousa-Coutinho, J. Cork waste in cement based materials. Mater. Des. 2015, 85, 230–239. [Google Scholar] [CrossRef]
- Sen, A.; Zhianski, M.; Glushkova, M.; Petkova, K.; Ferreira, J.; Pereira, H. Chemical composition and cellular structure of corks from Quercus suber trees planted in Bulgaria and Turkey. Wood Sci. Technol. 2016, 50, 1261–1276. [Google Scholar] [CrossRef]
- Graça, J. Suberin: The Biopolyester at the Frontier of Plants. Front. Chem. 2015, 3, 62. [Google Scholar] [CrossRef]
- Gil, L. New Cork-Based Materials and Applications. Materials 2015, 8, 625. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bhakare, M.A.; Lokhande, K.D.; Bondarde, M.P.; Dhumal, P.S.; Some, S. Dual functions of bioinspired, water-based, reusable composite as a highly efficient flame retardant and strong adhesive. Chem. Eng. J. 2023, 454, 140421. [Google Scholar] [CrossRef]
- Negro, F.; Bigando, R.; Ruffinatto, F.; Zanuttini, R. Technical Assessment of the Bonding Quality of Composite Plywood with a Thin Cork Core. Forests 2022, 13, 1839. [Google Scholar] [CrossRef]
- Franke, R.; Schreiber, L. Suberin—A Biopolyester Forming Apoplastic Plant Interfaces. Curr. Opin. Plant Biol. 2007, 10, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Barreca, F.; Arcuri, N.; Cardinali, G.D.; Di Fazio, S. A Bio-Based Render for Insulating Agglomerated Cork Panels. Coatings 2021, 11, 1478. [Google Scholar] [CrossRef]
- Xiaozhou, S.; Guorui, L.; Xuechun, F.; Li, Z. Preparation and Properties of Agglomerated Cork Panels Bound with Chitosan Binder. Wood Res. 2022, 67, 648–660. [Google Scholar] [CrossRef]
- Dunky, M. Wood Adhesives Based on Natural Resources: A Critical Review: Part I. Protein-Based Adhesives. Prog. Adhes. Adhes. 2021, 6, 203–336. [Google Scholar]
- Murray, B.S. Recent developments in food foams. Curr. Opin. Colloid Interface Sci. 2020, 50, 101394. [Google Scholar] [CrossRef]
- Dong, X.; Zhang, Y.Q. An Insight on Egg White: From Most Common Functional Food to Biomaterial Application. J. Biomed. Mater. Res. Part B Appl. Biomater. 2021, 109, 1045–1058. [Google Scholar] [CrossRef] [PubMed]
- Lorenz, L.F.; Frihart, C.R. Ovalbumin Has Unusually Good Wood Adhesive Strength and Water Resistance. J. Appl. Polym. Sci. 2023, 140, e53332. [Google Scholar] [CrossRef]
- Li, J.; Sun, J.; Gu, L.; Su, Y.; Yang, Y.; Chang, C.; Han, Q. Foaming Properties of Dried Egg White at Different Outlet Temperatures. J. Food Eng. 2023, 343, 111379. [Google Scholar] [CrossRef]
- Singh, C.; Khanna, V.; Singh, S. Sustainability of Microwave Heating in Materials Processing Technologies. Mater. Today Proc. 2023, 73, 241–248. [Google Scholar] [CrossRef]
- EN ISO 11925-2; Reaction to Fire Tests—Ignitability of Building Products Subjected to Direct Impingement of Flame—Part 2: Single-Flame Source Test. CEN: Brussels, Belgium, 2010.
- Antunes, A.; Faria, P.; Silva, V.; Brás, A. Rice husk-earth based composites: A novel bio-based panel for buildings refurbishment. Constr. Build. Mater. 2019, 221, 99–108. [Google Scholar] [CrossRef]
- Dev, S.R.S.; Orsat, V.; Gariépy, Y.; Raghavan, G.S.V.; Ruiz-Feria, C. Selected Post-Heating Properties of Microwave or Hot Water Heated Egg White for In-Shell Pasteurization. Int. J. Food Prop. 2010, 13, 778–788. [Google Scholar] [CrossRef] [Green Version]
- Gharbi, N.; Labbafi, M. Influence of Treatment-Induced Modification of Egg White Proteins on Foaming Properties. Food Hydrocoll. 2019, 90, 72–81. [Google Scholar] [CrossRef]
- Bonilla, J.C.; Clausen, M.P. Super-Resolution Microscopy to Visualize and Quantify Protein Microstructural Organization in Food Materials and Its Relation to Rheology: Egg White Proteins. Food Hydrocoll. 2022, 124, 107281. [Google Scholar] [CrossRef]
- Cunha, M.; Lourenço, A.; Barreiros, S.; Paiva, A.; Simões, P. Valorization of Cork Using Subcritical Water. Molecules 2020, 25, 4695. [Google Scholar] [CrossRef] [PubMed]
- Theo Kloprogge, J. Infrared and Raman Spectroscopy of Minerals and Inorganic Materials. Encycl. Spectrosc. Spectrom. 2016, 1, 267–281. [Google Scholar]
- Menager, C.; Guigo, N.; Vincent, L.; Sbirrazzuoli, N. Suberin from Cork as a Tough Cross-Linker in Bioepoxy Resins. ACS Appl. Polym. Mater. 2021, 3, 6090–6101. [Google Scholar] [CrossRef]
- Uysal, R.S.; Boyaci, I.H. Authentication of liquid egg composition using ATR-FTIR and NIR spectroscopy in combination with PCA. J. Sci. Food Agric. 2020, 100, 855–862. [Google Scholar] [CrossRef]
- Fernandes, E.M.; Correlo, V.M.; Mano, J.F.; Reis, R.L. Cork–Polymer Biocomposites: Mechanical, Structural and Thermal Properties. Mater. Des. 2015, 82, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, V.; Rosa, M.E.; Pereira, H. Variability of the Compression Properties of Cork. Wood Sci. Technol. 2014, 48, 937–948. [Google Scholar] [CrossRef]
- Santos, P.T.; Pinto, S.; Marques, P.A.A.P.; Pereira, A.B.; Alves de Sousa, R.J. Agglomerated Cork: A Way to Tailor Its Mechanical Properties. Compos. Struct. 2017, 178, 277–287. [Google Scholar] [CrossRef]
- Sergi, C.; Sarasini, F.; Tirillò, J. The Compressive Behavior and Crashworthiness of Cork: A Review. Polymers 2022, 14, 134. [Google Scholar] [CrossRef]
- Deng, W.; Xu, Q.; Hu, X.; Sheng, L. Structure and properties of egg white protein films modified by high-intensity ultrasound: An effective strategy. Food Res. Int. 2022, 157, 111264. [Google Scholar] [CrossRef]
- Şen, A.; Van Den Bulcke, J.; Defoirdt, N.; Van Acker, J.; Pereira, H. Thermal behaviour of cork and cork components. Thermochim. Acta 2014, 582, 94–100. [Google Scholar] [CrossRef]
- Hu, Y.; Nabipour, H.; Wang, X. Introduction to Flame Retardants for Polymeric Materials. Bio-based Flame-Retardant. Technol. Polym. Mater. 2022, 1–27. [Google Scholar] [CrossRef]
Sample | EWP | Egg Shells (CaCO3) | Al(OH)3 | Cork |
---|---|---|---|---|
PDSB 1 | 3 | - | - | 1 |
PDSB 2 | 3.5 | 2 | - | 1 |
PDSB 3 | 3.5 | 2 | 1 | 1 |
PDSB 4 | 3 | - | 1 | 1 |
PDSB 5 | 3 | 2 | - | 1 |
Sample | d (kg/m3) | E (MPa) | σmax (MPa) |
---|---|---|---|
PDSB1 | 204 ± 8 | 1.00 ± 0.17 | 2.73 ± 0.05 |
PDSB2 | 327 ± 26 | 1.27 ± 0.24 | 2.74 ± 0.13 |
PDSB3 | 365 ± 52 | 0.76 ± 0.27 | 1.96 ± 0.18 |
PDSB4 | 295 ± 15 | 12.30 ± 3.32 | 3.85 ± 0.37 |
PDSB5 | 364 ± 35 | 11.90 ± 3.38 | 3.94 ± 0.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luciano, G.; Vignali, A.; Vignolo, M.; Utzeri, R.; Bertini, F.; Iannace, S. Biocomposite Foams with Multimodal Cellular Structures Based on Cork Granulates and Microwave Processed Egg White Proteins. Materials 2023, 16, 3063. https://doi.org/10.3390/ma16083063
Luciano G, Vignali A, Vignolo M, Utzeri R, Bertini F, Iannace S. Biocomposite Foams with Multimodal Cellular Structures Based on Cork Granulates and Microwave Processed Egg White Proteins. Materials. 2023; 16(8):3063. https://doi.org/10.3390/ma16083063
Chicago/Turabian StyleLuciano, Giorgio, Adriano Vignali, Maurizio Vignolo, Roberto Utzeri, Fabio Bertini, and Salvatore Iannace. 2023. "Biocomposite Foams with Multimodal Cellular Structures Based on Cork Granulates and Microwave Processed Egg White Proteins" Materials 16, no. 8: 3063. https://doi.org/10.3390/ma16083063
APA StyleLuciano, G., Vignali, A., Vignolo, M., Utzeri, R., Bertini, F., & Iannace, S. (2023). Biocomposite Foams with Multimodal Cellular Structures Based on Cork Granulates and Microwave Processed Egg White Proteins. Materials, 16(8), 3063. https://doi.org/10.3390/ma16083063