Preparation and Properties of Organically Modified Na-Montmorillonite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Sodium Montmorillonite (Na-MMT)
2.3. Organic Modification of Na-MMT
2.4. Analysis and Characterization
2.4.1. Sample Analysis
2.4.2. Sample Characterization
3. Results and Discussion
3.1. Na-MMT Optimization Conditions
3.2. Characterization of the MMT
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greeaves, M.P.; Wilson, M.J. The adsorption of nucleic acids by montmorillonite. Soil Biol. Biochem. 1969, 1, 317–323. [Google Scholar] [CrossRef]
- Greathouse, J.A.; Cygan, R.T. Molecular dynamics simulation of uranyl(vi) adsorption equilibria onto an external montmorillonite surface. Phys. Chem. Chem. Phys. 2005, 7, 3580–3586. [Google Scholar] [CrossRef] [PubMed]
- Seki, Y.; Yurdako, K. Adsorption of promethazine hydrochloride with KSF montmorillonite. Adsorption 2006, 12, 89–100. [Google Scholar] [CrossRef]
- Benna, M.; Kbir-Ariguib, N.; Magnin, A.; Bergaya, F. Effect of pH on rheological properties of purified sodium bentonite suspensions. J. Colloid Interf. Sci. 1999, 218, 442–455. [Google Scholar] [CrossRef]
- Zhuang, G.Z.; Zhang, Z.P.; Chen, H.W. Influence of the interaction between surfactants and sepiolite on the rheological properties and thermal stability of organo-sepiolite in oil-based drilling fluids. Micropor. Mesopor. Mat. 2018, 272, 143–154. [Google Scholar] [CrossRef]
- Li, Q.Y.; Li, R.; Shi, W.Y. Cation adsorption at permanently (montmorillonite) and variably (quartz) charged mineral surfaces: Mechanisms and forces from subatomic scale. Appl. Clay Sci. 2021, 213, 106245. [Google Scholar] [CrossRef]
- Zhuang, G.Z.; Zhang, Z.P.; Peng, S.M.; Gao, J.H.; Pereira, F.A.R.; Jaber, M. The Interaction between surfactants and montmorillonite and its influence on the properties of organo-montmorillonite in oil-based drilling fluids. Clay Clay Min. 2019, 67, 190–208. [Google Scholar] [CrossRef]
- Xiao, F.; Yan, B.Q.; Zou, X.Y.; Cao, X.Q.; Dong, L.; Lyu, X.J.; Li, L.; Qiu, J.; Chen, P.; Hu, S.G.; et al. Study on ionic liquid modified montmorillonite and molecular dynamics simulation. Colloids Surf. A 2020, 587, 124311. [Google Scholar] [CrossRef]
- Tayeb, A.H.; Tajvidi, M. Sustainable barrier system via self-assembly of colloidal montmorillonite and crosslinking resins on nanocellulose interfaces. ACS Appl. Mater. Interfaces 2019, 11, 1604–1615. [Google Scholar] [CrossRef]
- Lin, T.; Ren, J.X.; Yin, X.F.; Li, X.; Li, J. Property comparison of Na-bentonite and Li-bentonite from Jianping. Foundry Technol. 2013, 34, 729–731. [Google Scholar]
- Zhuang, G.Z.; Zhang, Z.P.; Jaber, M. Organoclays used as colloidal and rheological additives in oil-based drilling fluids: An overview. Appl. Clay Sci. 2019, 177, 63–81. [Google Scholar] [CrossRef]
- Xia, F.; Wei, G.T.; Mo, J.H.; Li, Z.Y.; Li, Z.M.; Cai, S.Y.; Zhang, L.Y. Research progresses in water pollution control using inorganic modified bentonite as environment function material. Mater. Rep. 2013, 27, 71–75. [Google Scholar]
- Moreno-Sader, K.; García-Padilla, A.; Realpe, A.; Acevedo-Morantes, M.; Soares, J.B.P. Removal of heavy metal water pollutants (Co2+ and Ni2+) using Ppolyacrylamide/sodium montmorillonite (PAM/Na-MMT) nanocomposites. ACS Omega 2019, 4, 10834–10844. [Google Scholar] [CrossRef]
- Yan, L.G.; Xu, Y.Y.; Yu, H.Q.; Xin, X.D.; Wei, Q.; Du, B. Adsorption of phosphate from aqueous solution by hydroxy-aluminum, hydroxy-iron and hydroxy-iron–aluminum pillared bentonites. J. Hazard. Mater. 2010, 179, 244–250. [Google Scholar] [CrossRef]
- Kang, S.L.; Wang, H.; Guo, M.; Zhang, L.D.; Chen, M.M.; Jiang, S.W.; Li, X.J.; Jiang, S.T. Ethylene-vinyl alcohol copolymer-montmorillonite multilayer barrier film coated with mulberry anthocyanin for freshness monitoring. J. Agric. Food Chem. 2018, 66, 13268–13276. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, H.L.; Brito, E.S.; Souza-Filho, M.M.; Azeredo, H. Montmorillonite as a reinforcement and color stabilizer of gelatin films containing acerola juice. Appl. Clay Sci. 2018, 165, 1–7. [Google Scholar] [CrossRef]
- Jiang, Y.L.; Yin, H.; Zhou, X.F.; Wang, D.F.; Zhong, Y.; Xia, Q.; Deng, Y.; Zhao, Y.Y. Antimicrobial, antioxidant and physical properties of chitosan film containing Akebia trifoliata (Thunb.) Koidz. peel extract/montmorillonite and its application. Food Chem. 2021, 361, 130111. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.F.; Cheng, C.S.; Qin, Y.Y.; Sun, S.; Zhang, Z.H. Preservation of loquat by chitosan/nano-montmorillonite composite film. Food Res. Dev. 2011, 32, 168–171. [Google Scholar]
- Zhang, M.H.; Chen, H.Y. Development and characterization of starch-sodium alginate-montmorillonite biodegradable antibacterial films. Int. J. Biol. Macromol. 2023, 233, 123462. [Google Scholar] [CrossRef]
- GB/T 20973-2020; State Administration for Market Regulation, Standardization administration, National Standard for Bentonite. National Institute of Metrology, China: Beijing, China, 2020. (In Chinese)
- GB/T 27798-2011; State Administration for Market Regulation, Standardization administration, National Standard for Organical Bentonite. National Institute of Metrology, China: Beijing, China, 2011. (In Chinese)
- Lu, L.; Zhang, J.; Sun, H.; Jian, X.; Sun, D. Dispersion stability of organoclay in octane improved by adding nonionic surfactants. Colloid Surf. A 2012, 415, 180–186. [Google Scholar] [CrossRef]
- Valera-Zaragoza, M.; Agüero-Valdez, D.; Lopez-Medina, M.; Dehesa-Blas, S.; Juarez-Arellano, E.A. Controlled modification of sodium montmorillonite clay by a planetary ball-mill as a versatile tool to tune its properties. Adv. Powder Technol. 2021, 32, 591–599. [Google Scholar] [CrossRef]
- Liu, H.J.; Zhou, R.; Liang, Y.X. Study of technological conditions of sodium modified bentonite. Bull. Chin. Ceram. Soc. 2009, 28, 661–666. [Google Scholar] [CrossRef]
- Li, F.; He, W.W.; Sun, D.J.; Wu, T.; Li, Y.J. Effect of sodium-montmorillonite particles on the stability of oil droplets in produced water from alkali/surfactant/polymer flooding. J. Clean Prod. 2015, 104, 468–474. [Google Scholar] [CrossRef]
- Bain, J.A. A plasticity chart as an aid to the identification and assessment of industrial clays. Clay Min. 1971, 9, 1–17. [Google Scholar] [CrossRef]
- Ray, S.S.; Okamoto, M. Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites. Macromol. Rapid Commun. 2003, 24, 815–840. [Google Scholar] [CrossRef]
- Wu, T.; Yan, X.Y.; Cai, X.; Tan, S.Z.; Yang, W.D. Quaternary ammonium salts intercalated montmorillonite for removal of chattonella marina. Chin. J. Inorg. Chem. 2010, 26, 1399–1403. [Google Scholar]
- Zhang, G.Z.; Zhang, Z.P.; Guo, J.S.; Liao, L.B.; Zhao, J.L. A new ball milling method to produce organo-montmorillonite from anionic and nonionic surfactants. Appl. Clay Sci. 2015, 104, 18–26. [Google Scholar] [CrossRef]
- Zhuang, G.; Jiang, W.; Zhang, Z. Organic modifiers of organo-montmorillonite in oil system under high temperatures: Desorption or degradation? Ind. Eng. Chem. Res. 2019, 58, 2644–2653. [Google Scholar] [CrossRef]
- Oueslati, W.; Rhaiem, H.B.; Lanson, B.; Amara, A.B.H. Selectivity of Na-montmorillonite in relation with the concentration of bivalent cation (Cu2+, Ca2+, Ni2+) by quantitative analysis of XRD patterns. Appl. Clay Sci. 2009, 43, 224–227. [Google Scholar] [CrossRef]
Ingredient | SiO2 | Al2O3 | Fe2O3 | MgO | Na2O | CaO | Other | |
---|---|---|---|---|---|---|---|---|
Content/wt% | a | 60.41 | 23.47 | 0.28 | 3.02 | 0.17 | 1.12 | 11.53 |
b | 61.06 | 22.51 | 0.23 | 3.55 | 4.36 | 0.76 | 7.53 |
Sample | Weight Loss at 80–105 °C (%) | Weight Loss at 200–400 °C (%) | Weight Loss at 500–850 °C (%) | Residue (%) |
---|---|---|---|---|
MMT | 6.85 | 5.97 | 87.18 | |
Na-MMT | 5.76 | 7.11 | 87.23 | |
OMMT-1 | 2.56 | 15.43 | 12.52 | 69.49 |
OMMT-2 | 2.48 | 17.46 | 10.20 | 69.86 |
OMMT-3 | 2.29 | 22.48 | 11.38 | 63.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, Y.; Huang, Z.; Zhou, G.; Chen, C.; Sang, Y.; Yu, Z.; Jiang, L.; Mei, Y.; Wei, Y. Preparation and Properties of Organically Modified Na-Montmorillonite. Materials 2023, 16, 3184. https://doi.org/10.3390/ma16083184
Qian Y, Huang Z, Zhou G, Chen C, Sang Y, Yu Z, Jiang L, Mei Y, Wei Y. Preparation and Properties of Organically Modified Na-Montmorillonite. Materials. 2023; 16(8):3184. https://doi.org/10.3390/ma16083184
Chicago/Turabian StyleQian, Yan, Zeen Huang, Guantao Zhou, Chenan Chen, Yuhang Sang, Zuolong Yu, Legao Jiang, Yuning Mei, and Yunxiao Wei. 2023. "Preparation and Properties of Organically Modified Na-Montmorillonite" Materials 16, no. 8: 3184. https://doi.org/10.3390/ma16083184
APA StyleQian, Y., Huang, Z., Zhou, G., Chen, C., Sang, Y., Yu, Z., Jiang, L., Mei, Y., & Wei, Y. (2023). Preparation and Properties of Organically Modified Na-Montmorillonite. Materials, 16(8), 3184. https://doi.org/10.3390/ma16083184