Excellent Uniformity and Properties of Micro-Meter Thick Lead Zirconate Titanate Coatings with Rapid Thermal Annealing
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Priya, S.; Song, H.-C.; Zhou, Y.; Varghese, R.; Chopra, A.; Kim, S.-G.; Kanno, I.; Wu, L.; Ha, D.S.; Ryu, J.; et al. A Review on Piezoelectric Energy Harvesting: Materials, Methods, and Circuits. Energy Harvest. Syst. 2019, 4, 3–39. [Google Scholar] [CrossRef]
- Zhou, Q.; Lau, S.; Wu, D.; Shung, K.K. Piezoelectric films for high frequency ultrasonic transducers in biomedical applications. Prog. Mater. Sci. 2011, 56, 139–174. [Google Scholar] [CrossRef]
- Lu, Y.; Horsley, D.A. Modeling, Fabrication, and Characterization of Piezoelectric Micromachined Ultrasonic Transducer Arrays Based on Cavity SOI Wafers. J. Microelectromech. Syst. 2015, 24, 1142–1149. [Google Scholar] [CrossRef]
- Wang, X.-B.; He, L.-M.; Ma, Y.-C.; Liu, W.-J.; Xu, W.-J.; Ren, J.-Y.; Riaud, A.; Zhou, J. Development of Broadband High-Frequency Piezoelectric Micromachined Ultrasonic Transducer Array. Sensors 2021, 21, 1823. [Google Scholar] [CrossRef]
- Wang, M.; Zhou, Y.; Randles, A. Enhancement of the Transmission of Piezoelectric Micromachined Ultrasonic Transducer With an Isolation Trench. J. Microelectromech. Syst. 2016, 25, 691–700. [Google Scholar] [CrossRef]
- Peng, J.; Chao, C.; Tang, H. Piezoelectric micromachined ultrasonic transducer based on dome-shaped piezoelectric single layer. Microsyst. Technol. 2010, 16, 1771–1775. [Google Scholar] [CrossRef]
- Wang, Q.; Lu, Y.; Mishin, S.; Oshmyansky, Y.; Horsley, D.A. Design, Fabrication, and Characterization of Scandium Aluminum Nitride-Based Piezoelectric Micromachined Ultrasonic Transducers. J. Microelectromech. Syst. 2017, 26, 1132–1139. [Google Scholar] [CrossRef]
- Jung, J.; Lee, W.; Kang, W.; Shin, E.; Ryu, J.; Choi, H. Review of piezoelectric micromachined ultrasonic transducers and their applications. J. Micromechan. Microeng. 2017, 27, 113001–113024. [Google Scholar] [CrossRef]
- Khan, A.; Abas, Z.; Kim, H.S.; Oh, I.-K. Piezoelectric thin films: An integrated review of transducers and energy harvesting. Smart Mater. Struct. 2016, 25, 053002. [Google Scholar] [CrossRef]
- Kholkin, A.L.; Brooks, K.G.; Taylor, D.V.; Hiboux, S.; Setter, N. Self-polarization Effect in Pb(Zr, Ti)O3 Thin Films. Integr. Ferroelectr. 1998, 22, 525–533. [Google Scholar] [CrossRef]
- Taylor, D.V.; Damjanovic, D. Piezoelectric properties of rhombohedral Pb(Zr, Ti)O3 thin films with (100), (111), and ′random″ crystallographic orientation. Appl. Phys. Lett. 2000, 76, 1615–1617. [Google Scholar] [CrossRef]
- Ma, Y.; Song, J.; Wang, X.; Liu, Y.; Zhou, J. Synthesis, Microstructure and Properties of Magnetron Sputtered Lead Zirconate Titanate (PZT) Thin Film Coatings. Coatings 2021, 11, 944. [Google Scholar] [CrossRef]
- Dang, E.K.F.; Gooding, R.J. Theory of the effects of rapid thermal annealing on thin-film crystallization. Phys. Rev. Lett. 1995, 74, 3848–3851. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Jiang, S.; Li, Y.; Zhu, J.; Zhang, Y.; Wei, X.; Zeng, H. Crystallization behavior and domain structure in textured Pb(Zr0.52Ti0.48)O3 thin films by different annealing processes. Thin Solid Films 2006, 500, 138–143. [Google Scholar] [CrossRef]
- Hu, H.; Peng, C.; Krupanidhi, S.B. Effect of heating rate on the crystallization behavior of amorphous PZT thin films. Thin Solid Films 1993, 223, 327–333. [Google Scholar] [CrossRef]
- Wang, Y.; Yan, J.; Cheng, H.; Chen, N.; Yan, P.; Ouyang, J. Low thermal budget lead zirconate titanate thick films integrated on Si for piezo-MEMS applications. Microelectron. Eng. 2020, 219, 111145. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, Y.; Ikehara, T.; Mihara, T.; Maeda, R. Effects of rapid thermal annealing on nucleation, growth, and properties of lead zirconate titanate films. IEEE Trans Ultrason. Ferroelectr. Freq. Control 2007, 54, 2548–2554. [Google Scholar] [CrossRef] [PubMed]
- Wan, J.; Yang, C.T.; Gao, Y. The Influence of the Post-Annealing Temperature on the Crystalline Orientation and the Crystallinity of PZT Films. Adv. Mater. Res. 2012, 490–495, 3845–3849. [Google Scholar] [CrossRef]
- Yamauchi, S.; Tamura, H.; Yoshimaru, M.Y.M.; Ino, M.I.M. Electrical and Crystallographic Properties of Sputtered-Pb(Zr, Ti)O3 Films Treated by Rapid Thermal Annealing. Jpn. J. Appl. Phys. 1993, 32, 4118–4121. [Google Scholar] [CrossRef]
- Velu, G.; Remiens, D.; Thierry, B. Ferroelectric Properties of PZT Thin Films Prepared by Sputtering with Stoichiometric Single Oxide Target: Comparison Between Conventional and Rapid Thermal Annealing. J. Eur. Ceram. Soc. 1997, 17, 1749–1755. [Google Scholar] [CrossRef]
- Kathiresan, M.; Manikandan, C.; Premkumar, S.; Varadarajan, E.; Ramesh, R.; Jayaraj, M.K.; Santhanakrishnan, T. Key issues and challenges in device level fabrication of MEMS acoustic sensors using piezo thin films doped with strontium and lanthanum. J. Mater. Sci. Mater. Electron. 2022, 33, 11271–11280. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Yan, J.; Chen, N.; Yan, P.; Yang, F.; Ouyang, J. Large piezoelectricity on Si from highly (001)-oriented PZT thick films via a CMOS-compatible sputtering/RTP process. Materialia 2019, 5, 100228–100239. [Google Scholar] [CrossRef]
- Kanno, I.; Kotera, H.; Wasa, K. Measurement of transverse piezoelectric properties of PZT thin films. Sens. Actuators A Phys. 2003, 107, 68–74. [Google Scholar] [CrossRef]
- Lee, B.; Kim, C.; Kim, S.-H.; Shin, H. Revisit of Phase Transformation Kinetics in PZT Thin Films by Sol-Gel Method Using Scanning Force Microscopy. Integr. Ferroelectr. 2004, 68, 247–258. [Google Scholar] [CrossRef]
- Bose, A.; Sreemany, M.; Bysakh, S. Influence of processing parameters on the growth characteristics and ferroelectric properties of sputtered PZT thin films on stainless steel substrates. Appl. Surf. Sci. 2013, 282, 202–210. [Google Scholar] [CrossRef]
- Afanasjev, A.A.P.V.P.; Ronin, I.P.P.; Tarakanov, E.A.; Kaptelov, E.J.; Graul, J. Polarization and self-polarization in thin PbZr1-xTixO3 (PZT) films. J. Phys. Condens. Matter. 2001, 13, 8755–8763. [Google Scholar] [CrossRef]
- Wang, X.; Li, B.; Qi, L.; Wang, F.; Ding, F.; Zhang, R.; Zou, H. Effect of oxygen partial pressure on crystal quality and electrical properties of RF sputtered PZT thin films under the fixed Ar flow and sputtering pressure. Vacuum 2020, 172, 109041–109046. [Google Scholar] [CrossRef]
- Tsujiura, Y.; Kawabe, S.; Kurokawa, F.; Hida, H.; Kanno, I. Comparison of effective transverse piezoelectric coefficients e31,f of Pb(Zr, Ti)O3 thin films between direct and converse piezoelectric effects. Jpn. J. Appl. Phys. 2015, 54, 10NA04. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, H.; Yan, J.; Chen, N.; Yan, P.; Ouyang, J. Nonlinear electric field dependence of the transverse piezoelectric response in a (001) ferroelectric film. Scr. Mater. 2020, 189, 84–88. [Google Scholar] [CrossRef]
- Gong, D.; Qin, F.; Wang, Y.; Chen, Y.; Yang, T.; Sun, X. Adjustable response of PZT thin film based piezoelectric micro-actuator through DC bias pre-polarization. Solid-State Electron. 2020, 163, 107675. [Google Scholar] [CrossRef]
- Petrov, V.V.; Polyakov, V.V.; Varzarev, Y.N.; Pavlenko, A.V. Investigation of the effects of rapid thermal annealing on the structural properties of lead zirconate-titanate thin films. Ferroelectrics 2020, 561, 51–56. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Song, J.; Zhao, Y.; Tanaka, K.; Wu, S.; Dong, C.; Wang, X.; Kanno, I.; Ouyang, J.; Zhou, J.; et al. Excellent Uniformity and Properties of Micro-Meter Thick Lead Zirconate Titanate Coatings with Rapid Thermal Annealing. Materials 2023, 16, 3185. https://doi.org/10.3390/ma16083185
Ma Y, Song J, Zhao Y, Tanaka K, Wu S, Dong C, Wang X, Kanno I, Ouyang J, Zhou J, et al. Excellent Uniformity and Properties of Micro-Meter Thick Lead Zirconate Titanate Coatings with Rapid Thermal Annealing. Materials. 2023; 16(8):3185. https://doi.org/10.3390/ma16083185
Chicago/Turabian StyleMa, Youcao, Jian Song, Yuyao Zhao, Kiyotaka Tanaka, Shijunbo Wu, Chao Dong, Xubo Wang, Isaku Kanno, Jun Ouyang, Jia Zhou, and et al. 2023. "Excellent Uniformity and Properties of Micro-Meter Thick Lead Zirconate Titanate Coatings with Rapid Thermal Annealing" Materials 16, no. 8: 3185. https://doi.org/10.3390/ma16083185
APA StyleMa, Y., Song, J., Zhao, Y., Tanaka, K., Wu, S., Dong, C., Wang, X., Kanno, I., Ouyang, J., Zhou, J., & Liu, Y. (2023). Excellent Uniformity and Properties of Micro-Meter Thick Lead Zirconate Titanate Coatings with Rapid Thermal Annealing. Materials, 16(8), 3185. https://doi.org/10.3390/ma16083185