Research on Waste Combustion in the Aspect of Mercury Emissions
Abstract
:1. Introduction
- cadmium destroys the kidneys, causes hypertension and influences reproductive functions, and it should also be emphasized that it poses a huge toxicological risk because it easily penetrates into ground and underground waters;
- lead and antimony destroy bones, soft tissues, liver, brain and bone marrow; and
- arsenic (As): 39.2 (17.7–56.8) mg/kg, 44.5 (37.4–50.5) mg/kg, 119.2 (73.5–217.9) mg/kg;
- lead (Pb): 10.9 (7.8–16.9) mg/kg, 25.9 (23.0–29.1) mg/kg, 40.3 (23.9–77.4) mg/kg;
- mercury (Hg): 1.3 (<0.8–1.4) mg/kg, 1.8 (1.2–2.2) mg/kg, 3.0 (1.7–3.8) mg/kg;
- chromium (Cr): 68.9 (52.3–82.2) mg/kg, 181.6 (160.0–199.1) mg/kg, 189.2 (148.4–214.3) mg/kg;
- iron (Fe): 13,445 (11,530–15,830) mg/kg, 34,839 (31,530–37,400) mg/kg, 35,211 (27,370–40,600) mg/kg;
- zirconium (Zr): 32.5 (24.4–41.8) mg/kg, 118.2 (105.3–129.7) mg/kg, 103.8 (69.8–125.2) mg/kg;
- cobalt (Co): 13.9 (<3.0–20.5) mg/kg, 25.8 (22.7–31.5) mg/kg, 22.5 (12.9–32.9) mg/kg;
- zinc (Zn): 120.2 (55.2–156.3) mg/kg, 328.2 (262.8–397.2) mg/kg, 367.6 (239.8–602.1) mg/kg;
- copper (Cu): 18.8 (13.6–23.1) mg/kg, 42.3 (39.5–45.6) mg/kg, 45.3 (32.9–52.5) mg/kg;
- nickel (Ni): 63.5 (47.1–79.0) mg/kg, 156.7 (143.2–170.0) mg/kg, 155.4 (117.3–173.3) mg/kg;
- manganese (Mn): 111.8 (73.3–141.8) mg/kg, 226.0 (207.0–254.9) mg/kg, 272.8 (214.5–312.8) mg/kg;
- vanadium (V): 145.3 (114.4–182.3) mg/kg, 278.5 (222.7–320.7) mg/kg, 374.7 (299.0–420.4) mg/kg;
- titanium (Ti): 133.1 (1132.0–1522.0) mg/kg, 3519.7 (3164.0–3982.0) mg/kg, 3568.0 (2739.0–3959.0) mg/kg.
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- Due to the increasingly restrictive legal regulations regarding environmental aspects, it is extremely important to constantly recognize the course of coal and waste combustion, also from the point of view of the emissions of gases released into the atmosphere.
- The mercury content of materials varies and this depends on their origin.
- Among the materials considered, coke waste and sewage sludge are distinguished by their high mercury content: 523.16 µg/kg and 527.81 µg/kg, respectively.
- The value of Hg emission during the combustion process depends on the initial mercury content in the waste.
- The addition of a polymer to 10% of coal fuels leads to a reduction in mercury emissions in exhaust gases. This reduction is 53.72% in the case of hard coal (90%) + polymer waste (10%) and 26.36% in the case of coal sludge (90%) + polymer waste (10%).
- The results of the conducted tests show the adequacy of mercury release during the considered materials’ combustion in terms of the emissions of the other compounds considered (CO, CO2, SO2, H2S and NOx).
- The higher NOx emission values during the combustion of coal fuels–polymer mixtures result from the high nitrogen content compared to coal or coal sludge in the considered polymer.
- Under the considered process conditions, small amounts of mercury in waste ashes were found, including 6.02 µg/kg for hard coal ash, 1.45 µg/kg for paper waste ash and 6.47 µg/kg for biomass waste ash.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ustawa z Dnia 14 Grudnia 2012 r. o Odpadach. Available online: https://eli.gov.pl/eli/DU/2013/21/ogl/pol (accessed on 8 January 2013). (In Polish)
- Rozporządzenie Ministra Klimatu z Dnia 2 Stycznia 2020 r. w Sprawie Katalogu Odpadów. Available online: https://eli.gov.pl/eli/DU/2020/10/ogl/pol (accessed on 3 January 2020). (In Polish)
- Obwieszczenie Marszałka Sejmu Rzeczypospolitej Polskiej z Dnia 3 Marca 2022r. w Sprawie Ogłoszenia Jednolitego Tekstu Ustawy o Odpadach. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20220000699/U/D20220699Lj.pdf (accessed on 12 December 2013). (In Polish)
- Rocznik Statystyczny Przemysłu. GUS, 2021. Available online: https://stat.gov.pl/obszary-tematyczne/roczniki-statystyczne/roczniki-statystyczne/rocznik-statystyczny-przemyslu-2021,5,15.html (accessed on 28 February 2022). (In Polish)
- Ochrona Środowiska 2022; GUS: Warszawa, Poland, 2022. (In Polish)
- Rozporządzenie Ministra Klimatu z Dnia 11 Września 2020 r. w Sprawie Szczegółowych Wymagań Dla Magazynowania Odpadów. Available online: https://eli.gov.pl/api/acts/DU/2020/1742/text/O/D20201742.pdf (accessed on 11 September 2020). (In Polish)
- Obwieszczenie Ministra Klimatu i Środowiska z Dnia 18 Listopada 2022 r. w Sprawie Ogłoszenia Jednolitego Tekstu Rozporządzenia Ministra Środowiska w Sprawie Stosowania Komunalnych Osadów Ściekowych. Available online: https://eli.gov.pl/api/acts/DU/2023/23/text.pdf (accessed on 4 January 2023). (In Polish)
- Rozporządzenie Ministra Gospodarki z Dnia 16 Lipca 2015 r. w Sprawie Dopuszczania Odpadów do Składowania na Składowiskach. Available online: https://eli.gov.pl/eli/DU/2015/1277/ogl (accessed on 1 September 2015). (In Polish)
- Suszarnie Niskotemperaturowe Czy Technologia Granulacji Osadów? Available online: https://seidel-przywecki.eu/2020/09/03/suszarnie-niskotemperaturowe-czy-technologia-granulacji-osadow/ (accessed on 3 September 2020). (In Polish).
- Strategia Postępowania z Komunalnymi Osadami Ściekowymi na lata 2019–2022; Ministerstwo Środowiska: Warsaw, Poland, 2018. (In Polish)
- Kijo-Kleczkowska, A.; Środa, K.; Kosowska-Golachowska, M.; Musiał, T.; Wolski, K. Experimental research of sewage sludge with coal and biomass co-combustion, in pellet form. Waste Manag. 2016, 53, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Kijo-Kleczkowska, A.; Środa, K.; Kosowska-Golachowska, M.; Musiał, T.; Wolski, K. Mechanisms and kinetics of granulated sewage sludge combustion. Waste Manag. 2015, 46, 459–471. [Google Scholar] [CrossRef] [PubMed]
- Werther, J.; Ogada, T. Sewage sludge combustion. Prog. Energy Combust. Sci. 1999, 25, 55–116. [Google Scholar] [CrossRef]
- Tomeczek, J. Spalanie Węgla; Wydawnictwo Politechniki Śląskiej: Gliwice, Poland, 1992. [Google Scholar]
- Chomiak, J. Podstawowe Problemy Spalania; PWN: Warszawa, Poland, 1977. (In Polish) [Google Scholar]
- Kijo-Kleczkowska, A.; Szumera, M.; Gnatowski, A.; Sadkowski, D. Comparative Thermal Analysis of Coal Fuels, Biomass, Fly Ash and Polyamide. Energy 2022, 258, 124840. [Google Scholar] [CrossRef]
- Nadziakiewicz, J.; Kozioł, M. Co-combustion of sludge with coal. Appl. Energy 2003, 75, 239–248. [Google Scholar] [CrossRef]
- Kijo-Kleczkowska, A.; Środa, K.; Kosowska-Golachowska, M.; Musiał, T.; Wolski, K. Combustion of pelleted sewage sludge with reference to coal and biomass. Fuel 2016, 170, 141–160. [Google Scholar] [CrossRef]
- Kordylewski, W. Spalanie i Paliwa; Oficyna Wydawnicza Politechniki Wrocławskiej: Wrocław, Poland, 2005. (In Polish) [Google Scholar]
- Kosowska-Golachowska, M.; Luckos, A.; Kijo-Kleczkowska, A.; Musiał, T.; Wolski, K.; Środa, K. Analysis of pollutant emissions during circulating fluidized bed combustion of sewage sludge. J. Phys. Conf. Ser. 2019, 1398, 012010. [Google Scholar] [CrossRef]
- Li-Ming, S.; Shi-Suo, F.; Hua, Z.; Qi-Sheng, Y.; Pin-Jing, H. SO2 and NOx emissions from sludge combustion in a CO2/O2 atmosphere. Fuel 2013, 109, 178–183. [Google Scholar]
- Saènger, M.; Werther, J.; Ogada, T. NOx and N2O emission characteristics from fluidised bed combustion of semi-dried municipal sewage sludge. Fuel 2001, 80, 167–177. [Google Scholar] [CrossRef]
- Shimizu, T.; Toyono, M.; Ohsawa, H. Emissions of NOx and N2O during co-combustion of dried sewage sludge with coal in a bubbling fluidized bed combustor. Fuel 2007, 86, 957–964. [Google Scholar] [CrossRef]
- Leckner, B.; Åmand, L.-E.; Lücke, K.; Werther, J. Gaseous emissions from co-combustion of sewage sludge and coal/wood in a fluidized bed. Fuel 2004, 83, 477–486. [Google Scholar] [CrossRef]
- Hartman, M.; Pohořelý, M.; Trnka, O. Behaviour of inorganic constituents of municipal sewage sludge during fluidized-bed combustion. Chem. Pap. 2007, 61, 181–185. [Google Scholar] [CrossRef]
- Nadziakiewicz, J. Spalanie Stałych Substancji Odpadowych; Wyd. Gnome: Katowice, Poland, 2001. (In Polish) [Google Scholar]
- Rozporządzenie Ministra Klimatu z Dnia 24 Września 2020 r. w Sprawie Standardów Emisyjnych Dla Niektórych Rodzajów Instalacji, Źródeł Spalania Paliw Oraz Urządzeń Spalania Lub Współspalania Odpadów. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20200001860 (accessed on 22 October 2020). (In Polish)
- Sushil, S.; Batra, V.S. Analysis of fly ash heavy metal content and disposal in three thermal power plants in India. Fuel 2006, 85, 2676–2679. [Google Scholar] [CrossRef]
- Piecuch, T. Termiczna utylizacja odpadów. Rocz. Ochr. Sr. 2000, 2, 11–37. (In Polish) [Google Scholar]
- Wilk, M.; Gworek, B. Metale ciężkie w osadach ściekowych. Ochr. Sr. I Zasobów Nat. 2009, 3, 40–59. (In Polish) [Google Scholar]
- Vejahati, F.; Xu, Z.; Gupta, R. Trace elements in coal: Associations with coal and minerals and their behavior during coal utilization—A review. Fuel 2010, 89, 904–911. [Google Scholar] [CrossRef]
- Altıkulaç, A.; Turhan, S.; Kurnaz, A.; Gören, E.; Duran, C.; Hançerlioğulları, A.; Uğur, F.A. Assessment of the Enrichment of Heavy Metals in Coal and Its Combustion Residues. ACS Omega 2022, 7, 21239–21245. [Google Scholar] [CrossRef]
- Pazalja, M.; Salihović, M.; Sulejmanović, J.; Smajović, A.; Begić, S.; Špirtović-Halilović, S.; Sher, F. Heavy metals content in ashes of wood pellets and the health risk assessment related to their presence in the environment. Sci. Rep. 2021, 11, 17952. [Google Scholar] [CrossRef]
- Kowalik, R.; Latosínska, J.; Gawdzik, J. Risk Analysis of Heavy Metal Accumulation from Sewage Sludge of Selected Wastewater Treatment Plants in Poland. Water 2021, 13, 2070. [Google Scholar] [CrossRef]
- Shrivastava, S.K.; Banerjee, D.K. Speciation of metals in sewage sludge and sludge—Amended soils. Water. Air. Soil. Pollut. 2004, 152, 219–232. [Google Scholar] [CrossRef]
- Hussain, A.; Priyadarshi, M.; Dubey, S. Experimental study on accumulation of heavy metals in vegetables irrigated with treated wastewater. Appl. Water Sci. 2019, 9, 122. [Google Scholar] [CrossRef]
- Krutul, D.; Szadkowski, J.; Antczak, A.; Drożdżek, M.; Radomski, A.; Karpiński, S.; Zawadzki, J. The concentration of selected heavy metals in poplar wood biomass and liquid fraction obtained after high temperature pretreatment. Wood Res. 2021, 66, 39–48. [Google Scholar] [CrossRef]
- Akintola, O.O.; Bodede, I.A. Distribution and accumulation of heavy metals in Red Cedar (Cedrela odorata) wood seedling grown in dumpsite soil. J. Appl. Sci. Environ. Manag. 2019, 23, 811–817. [Google Scholar] [CrossRef]
- Yang, S.H.; Lee, T.W.; Lee, J.I.; Choi, H. Distribution Characteristics of Hazardous Heavy Metals in Ginseng and Wood-cultivated Ginseng. J. Food Hyg. Saf. 2019, 34, 325–333. [Google Scholar] [CrossRef]
- Dziok, T.; Bury, M.; Burmistrz, P. Mercury release from municipal solid waste in the thermal treatment process. Fuel 2022, 329, 125528. [Google Scholar] [CrossRef]
- Dziok, T.; Kołodziejska, E.K.; Kołodziejska, E.K. Mercury content in woody biomass and its removal in the torrefaction process. Biomass Bioenergy 2020, 143, e105832. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, L.; Niu, X.; Gao, L.; Cao, Y.; Wei, X.-X.; Li, X. Mercury release characteristics during pyrolysis of eight bituminous coals. Fuel 2018, 222, 250–257. [Google Scholar] [CrossRef]
- Burmistrz, P.; Kogut, K. Mercury in bituminous coal used in polish power plants. Arch. Min. Sci. 2016, 61, 473–488. [Google Scholar] [CrossRef]
- Zhang, C.; Chen, G.; Yang, T.; Guoging, L.; Mak, C.; Kelly, D.; Xu, Z. An Investigation on Mercury Association in an Alberta Sub-bituminous Coal. Energy Fuels 2007, 21, 485–490. [Google Scholar] [CrossRef]
- Senior, C.; Helble, J.; Sarofim, A. Emissions of mercury, trace elements, and fine particles from stationary combustion sources. Fuel Process. Technol. 2000, 65, 263–288. [Google Scholar] [CrossRef]
- Wichliński, M. Emisja rtęci z polskich elektrowni w świetle konkluzji BAT. Polityka Energetyczna 2017, 20, 79–88. (In Polish) [Google Scholar]
- Kogut, K.; Gorecki, J.; Burmistrz, P. Opportunities for reducing mercury emissions in the cement industry. J. Clean. Prod. 2021, 293, 126053. [Google Scholar] [CrossRef]
- Dziok, T.; Bury, M.; Bytnar, K.; Burmistrz, P. Possibility of using alternative fuels in Polish power plants in the context of mercury emissions. Waste Manag. 2021, 126, 578–584. [Google Scholar] [CrossRef]
- Wichliński, M.; Kobyłecki, R.; Bis, Z. Emisja rtęci podczas termicznej obróbki paliw. Polityka Energetyczna 2011, 14, 191–202. (In Polish) [Google Scholar]
- Makowska, D.; Wierońska, F.; Dziok, T.; Strugała, A. Emisja pierwiastków ekotoksycznych z procesów spalania paliw stałych w świetle regulacji prawnych. Polityka Energetyczna Energy Policy J. 2017, 20, 89–102. (In Polish) [Google Scholar]
- Lorenz, U. Skutki Spalania Węgla Kamiennego Dla Środowiska Przyrodniczego i Możliwości Ich Ograniczania; Szkoła Eksploatacji Podziemnej—Sympozja i Konferencje nr 64: Kraków, Poland, 2005; pp. 97–112. (In Polish) [Google Scholar]
- Burmistrz, P.; Kogut, K.; Marczak, M.; Zwaździak, J. Lignites and subbituminous coals combustion in Polish power plants as a source of anthropogenic mercury emission. Fuel Process. Technol. 2016, 152, 250–258. [Google Scholar] [CrossRef]
- Kropotova, S.S.; Kuznetsov, G.V.; Strizhak, P.A. Identifying products of pyrolysis and combustion of materials at incipient stages of fires. Fire Saf. J. 2022, 132, 103643. [Google Scholar] [CrossRef]
- Leichtnam, J.N.; Schwartz, D.; Gadiou, R. The behaviour of fuel-nitrogen during fast pyrolysis of polyamide at high temperature. J. Anal. Appl. Pyrolysis 2000, 55, 255–268. [Google Scholar] [CrossRef]
- Siat, C.; Bourbigot, S.; Bras, M. Thermal behaviour of polyamide-6-based intumescent formulations—A kinetic study. Polym. Degrad. Stab. 1997, 58, 303–313. [Google Scholar] [CrossRef]
- Dabrowski, F.; Bourbigot, S.; Delobel, R.; Bras, M. Kinetic modelling of the thermal degradation: Of polyamide-6 nanocomposite. Eur. Polym. J. 2000, 36, 273–284. [Google Scholar] [CrossRef]
- Luche, J.; Mathis, E.; Rogaume, T.; Richard, F.; Guillaume, E. High-density polyethylene thermal degradation and gaseous compound evolution in a cone calorimeter. Fire Saf. J. 2012, 54, 24–35. [Google Scholar] [CrossRef]
- Zhang, S.; Chen, H.; Zhang, Y.; Zhang, Y.-M.; Kan, W.; Pan, M. Flame Retardancy of High-Density Polyethylene Composites with P,N-Doped Cellulose Fibrils. Polymers 2020, 12, 336. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Gong, J.; Huang, D.; Liu, X.; Zhang, G. Numerical Study on the Spontaneous Combustion of High-density Polyethylene. Procedia Eng. 2018, 211, 621–628. [Google Scholar] [CrossRef]
- Hodgkin, J.H.; Galbraith, M.N.; Chong, Y.K. Combustion Products from Burning Polyethylene. J. Macromol. Sci. Part A Chem. 2006, 17, 35–44. [Google Scholar] [CrossRef]
- Gonçalves, C.K.; Tenório, J.; Levendis, Y.A.; Carlson, J.B. Emissions from the Premixed Combustion of Gasified Polyethylene. Energy Fuels 2008, 22, 372–381. [Google Scholar] [CrossRef]
- Frolov, S.M.; Shamshin, I.O.; Kazachenko, M.V.; Aksenov, V.S.; Bilera, I.V.; Ivanov, V.S.; Zvegintsev, V.I. Polyethylene Pyrolysis Products: Their Detonability in Air and Applicability to Solid-Fuel Detonation Ramjets. Energies 2021, 14, 820. [Google Scholar] [CrossRef]
- Anene, A.F.; Fredriksen, S.B.; Sætre, K.A.; Tokheim, L.-A. Experimental Study of Thermal and Catalytic Pyrolysis of Plastic Waste Components. Sustainability 2018, 10, 3979. [Google Scholar] [CrossRef]
- PN-G-04502:2014-11; Węgiel Kamienny i Brunatny—Pobieranie i Przygotowanie Próbek do Badań Laboratoryjnych—Metody Podstawowe. Polish Committee for Standardization: Warsaw, Poland, 2014. (In Polish)
- PN-ISO 1928:2002; Paliwa Stałe—Oznaczanie Ciepła Spalania Metodą Spalania w Bombie Kalorymetrycznej i Obliczanie Wartości Opałowej. Polish Committee for Standardization: Warsaw, Poland, 2002. (In Polish)
- PN-G-04511:1980; Paliwa Stałe—Oznaczanie Zawartości Wilgoci. Polish Committee for Standardization: Warsaw, Poland, 1980. (In Polish)
- PN-G-04512:1980; Paliwa Stałe—Oznaczanie Zawartości Popiołu Metodą Wagową. Polish Committee for Standardization: Warsaw, Poland, 1980. (In Polish)
- PN-G-04584:2001; Paliwa Stałe—Oznaczanie Zawartości Siarki Całkowitej i Popiołowej Automatycznymi Analizatorami. Polish Committee for Standardization: Warsaw, Poland, 2001. (In Polish)
- PN-G-04571:1998; Paliwa Stałe—Oznaczanie Zawartości Węgla, Wodoru i Azotu Automatycznymi Analizatorami—Metoda Makro. Polish Committee for Standardization: Warsaw, Poland, 1998. (In Polish)
- Jankowski, D.; Żukowski, W. Procesy termiczne jako metody redukcji odpadów z tworzyw sztucznych—Badania wstępne w reaktorze ze złożem fluidalnym. CHEMIK 2011, 65, 1041–1048. [Google Scholar]
- Krzywanski, J.; Czakiert, T.; Zylka, A.; Nowak, W.; Sosnowski, M.; Grabowska, K.; Skrobek, D.; Sztekler, K.; Kulakowska, A.; Ashraf, W.M.; et al. Modelling of SO2 and NOx Emissions from Coal and Biomass Combustion in Air-Firing, Oxyfuel, iG-CLC, and CLOU Conditions by Fuzzy Logic Approach. Energies 2022, 15, 8095. [Google Scholar] [CrossRef]
- Krzywanski, J. Heat Transfer Performance in a Superheater of an Industrial CFBC Using Fuzzy Logic-Based Methods. Entropy 2019, 21, 919. [Google Scholar] [CrossRef]
- Krzywanski, J.; Urbaniak, D.; Otwinowski, H.; Wylecial, T.; Sosnowski, M. Fluidized Bed Jet Milling Process Optimized for Mass and Particle Size with a Fuzzy Logic Approach. Materials 2020, 13, 3303. [Google Scholar] [CrossRef] [PubMed]
- Krzywanski, J.; Czakiert, T.; Nowak, W.; Shimizu, T.; Zylka, A.; Idziak, K.; Sosnowski, M.; Grabowska, K. Gaseous emissions from advanced CLC and oxyfuel fluidized bed combustion of coal and biomass in a complex geometry facility: A comprehensive model. Energy 2022, 251, 123896. [Google Scholar] [CrossRef]
Parameter | Sewage Sludge (Dry) | Municipal Waste | Beech Wood | Willow | Lignite | Hard Coal |
---|---|---|---|---|---|---|
cadmium | 1.4–20 | 5.95 | 1.2 | 719 | 0.4–1.0 | 0.4–2.0 |
copper | 80–800 | 45 | 1530 | 3.8 | 8–44 | 12–60 |
nickel | 16–50 | 3 | 605 | 2.01 | 3–38 | 6–48 |
lead | 20–50 | 279 | 185 | 2.91 | 3–24 | 6–50 |
zinc | 2400–6100 | 663 | 550 | 135.96 | 3–73 | 20–420 |
mercury | 2–2.5 | 1.22 | <5 | 0.03 | — | 0.004–0.13 |
Parameter/ Material | W ad | V ad [%] | A ad [%] | C ad [%] | H ad [%] | S ad [%] | HHV [kJ/kg] | Hg [µg/kg] |
---|---|---|---|---|---|---|---|---|
Hard coal | 12.07 | 29.49 | 6.26 | 51.63 | 10.48 | 1.17 | 21,506 | 216.93 |
Coal sludge | 10.66 | 16.32 | 55.92 | 19.26 | 3.83 | 0.47 | 16,039 | 133.51 |
Coke waste | 14.85 | 11.62 | 36.25 | 24.10 | 6.24 | 2.22 | 12,609 | 523.16 |
Sewage sludge | 13.81 | 21.81 | 61.02 | 15.00 | 5.59 | 0.88 | 5062 | 527.81 |
Paper waste | 4.33 | 54.80 | 36.69 | 30.19 | 5.20 | 0.64 | 10,740 | 179.78 |
Biomass waste | 13.59 | 64.67 | 2.64 | 44.19 | 11.93 | 0.13 | 17,026 | 7.43 |
Polymer waste * | 1.31 | 98.60 | 0.04 | 62.40 | 9.07 | 0.01 | 30,496 | 2.74 |
Material/Chemical Compounds [%] | Hard Coal | Coal Sludge | Coke Waste | Sewage Sludge | Paper Waste | Biomass Waste | Polymer Waste |
---|---|---|---|---|---|---|---|
SiO2 | 25.61 | 44.61 | 17.19 | 28.59 | 20.47 | 18.26 | 17.50 |
Al2O3 | 14.31 | 22.77 | 10.46 | — | 11.34 | 10.51 | 10.59 |
Fe2O3 | 5.13 | 3.82 | 28.75 | 7.02 | 5.07 | 0.27 | 0.28 |
CaO | 1.90 | 1.36 | 1.28 | 5.36 | 33.34 | 2.13 | 0.60 |
MgO | 0.87 | 0.87 | 0.83 | — | 0.86 | 0.86 | 0.86 |
K2O | 0.79 | 2.34 | 0.12 | 1.04 | 0.53 | 1.42 | 0.06 |
P2O5 | 0.20 | 0.10 | 4.80 | 15.93 | 2.16 | 0.50 | 0.04 |
SO3 | 6.88 | 0.87 | 2.96 | 5.88 | 2.53 | 0.10 | — |
MnO | 0.06 | 0.05 | 0.10 | 0.08 | 0.14 | 0.12 | 0.01 |
SrO | 0.04 | 0.04 | 0.04 | 0.06 | 0.12 | 0.02 | 0.01 |
TiO2 | 0.49 | 1.00 | 0.09 | 0.40 | 0.01 | — | 2.50 |
Parameter/ Material | Content of Hg in Materials’ Ash [µg/kg] |
---|---|
Hard coal | 6.02 |
Coal sludge | 2.24 |
Coke waste | 38.90 |
Sewage sludge | 35.08 |
Paper waste | 1.45 |
Biomass waste | 6.47 |
Hard coal (90%) + polymer waste (10%) | 4.10 |
Coal sludge (90%) + polymer waste (10%) | 1.52 |
Gas Emissions/Material | Hard Coal | Coal Sludge | Coke Waste | Sewage Sludge | Paper Waste | Biomass Waste | Hard Coal (90%) + Polymer Waste (10%) | Coal Sludge (90%) + Polymer Waste (10%) |
---|---|---|---|---|---|---|---|---|
Hg [μg/m3] | 2.42 | 1.29 | 2.73 | 1.79 | 1.46 | 0.96 | 1.12 | 0.95 |
CO [ppm] | 167.20 | 90.38 | 213.10 | 153.54 | 126.61 | 27.43 | 81.14 | 47.68 |
SO2 [ppm] | 448.68 | 267.87 | 206.37 | 385.77 | 229.35 | 4.12 | 178.26 | 44.56 |
H2S [ppm] | 348.43 | 118.07 | 33.87 | 108.46 | 57.49 | 18.34 | 148.12 | 90.25 |
NOx [ppm] | 119.73 | 59.58 | 69.52 | 84.60 | 87.01 | 20.84 | 120.54 | 78.73 |
CO2 [%] | 8.31 | 8.77 | 3.05 | 3.51 | 2.71 | 0.25 | 3.83 | 2.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kijo-Kleczkowska, A.; Gnatowski, A.; Tora, B.; Kogut, K.; Bytnar, K.; Krzywanski, J.; Makowska, D. Research on Waste Combustion in the Aspect of Mercury Emissions. Materials 2023, 16, 3213. https://doi.org/10.3390/ma16083213
Kijo-Kleczkowska A, Gnatowski A, Tora B, Kogut K, Bytnar K, Krzywanski J, Makowska D. Research on Waste Combustion in the Aspect of Mercury Emissions. Materials. 2023; 16(8):3213. https://doi.org/10.3390/ma16083213
Chicago/Turabian StyleKijo-Kleczkowska, Agnieszka, Adam Gnatowski, Barbara Tora, Krzysztof Kogut, Krzysztof Bytnar, Jaroslaw Krzywanski, and Dorota Makowska. 2023. "Research on Waste Combustion in the Aspect of Mercury Emissions" Materials 16, no. 8: 3213. https://doi.org/10.3390/ma16083213
APA StyleKijo-Kleczkowska, A., Gnatowski, A., Tora, B., Kogut, K., Bytnar, K., Krzywanski, J., & Makowska, D. (2023). Research on Waste Combustion in the Aspect of Mercury Emissions. Materials, 16(8), 3213. https://doi.org/10.3390/ma16083213