Influence of Calcination Temperature and Amount of Low-Grade Clay Replacement on Mitigation of the Alkali–Silica Reaction
Abstract
:1. Introduction
2. Materials
3. Methods
3.1. Materials Characterization
3.2. Accelerated Mortar Bar Tests
3.3. Microstructural Investigation Using SEM
4. Results and Discussion
5. Conclusions
- Dehydroxylation of low-grade clay was dependent on the calcination temperature. The favorable temperature for kaolinite dehydroxylated was 650 °C and for muscovite/Illite was 850 °C.
- The relationship between specific surface area of calcined clay, measured using nitrogen adsorption and its calcination temperature was found.
- There is a clear effect of clay calcination temperature on its pozzolanic activity as measured by the Fratini pozzolanity value, and the highest pozzolanic activity was shown by clay calcined at 750 °C. However, there is no simple and straightforward translation of the pozzolanic activity measured by the Fratini test into the ability to mitigate the ASR expansion.
- The study found that the use of low-grade calcined clay can have a beneficial effect on reducing alkali–silica expansion in mortars, regardless of the percentage of substitution with cement. However, the results also indicate that at the lower percentage of substitution (10%), the expansion results did not meet the limits specified in ASTM standards.
- The ASR expansion results showed the opposite effect when 10% or 20% low-grade calcined clay was used, which may be due to different Ca/Si ratios and portlandite consumption depending on the specific surface area of the calcined clay.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajabipour, F.; Giannini, E.; Dunant, C.; Ideker, J.H.; Thomas, M.D.A. Alkali–silica reaction: Current understanding of the reaction mechanisms and the knowledge gaps. Cem. Concr. Res. 2015, 76, 130–146. [Google Scholar] [CrossRef]
- Jóźwiak-Niedźwiedzka, D.; Antolik, A. Assessment of highway pavement concrete suffering from alkali-silica reaction: Case study. Mater. Constr. 2022, 72, e299. [Google Scholar] [CrossRef]
- Nguyen, A.; Gharehbaghi, V.; Le, N.T.; Sterling, L.; Chaudhry, U.I.; Crawford, S. ASR crack identification in bridges using deep learning and texture analysis. Structures 2023, 50, 494–507. [Google Scholar] [CrossRef]
- Figueira, R.B.; Sousa, R.; Coelho, L.; Azenha, M.; de Almeida, J.M.; Jorge, P.A.S.; Silva, C.J.R. Alkali-silica reaction in concrete: Mechanisms, mitigation and test methods. Constr. Build. Mater. 2019, 222, 903–931. [Google Scholar] [CrossRef]
- Nixon, P.J.; Sims, I. RILEM Recommendations for the Prevention of Damage by AAR in New Concrete Structures: State-of-the-Art Report of the RILEM TC 219-ACS; Springer: Berlin/Heidelberg, Germany, 2016; Volume 17, p. 181. [Google Scholar]
- Santos, M.B.; de Brito, J.; Santos Silva, A. A review on alkali-silica reaction evolution in recycled aggregate concrete. Materials 2020, 13, 2625. [Google Scholar] [CrossRef] [PubMed]
- Hay, R.; Ostertag, C.P. New insights into the role of fly ash in mitigating alkali-silica reaction (ASR) in concrete. Cem. Concr. Res. 2021, 144, 106440. [Google Scholar] [CrossRef]
- Tapas, M.J.; Sofia, L.; Vessalas, K.; Thomas, P.; Sirivivatnanon, V.; Scrivener, K. Efficacy of SCMs to mitigate ASR in systems with higher alkali contents assessed by pore solution method. Cem. Concr. Res. 2021, 142, 106353. [Google Scholar] [CrossRef]
- Cassiani, J.; Dugarte, M.; Martinez-Arguelles, G. Evaluation of the chemical index model for predicting supplementary cementitious material dosage to prevent the alkali-silica reaction in concrete. Constr. Build. Mater. 2021, 275, 122158. [Google Scholar] [CrossRef]
- Jaskulski, R.; Jóźwiak-Niedźwiedzka, D.; Yakymechko, Y. Calcined clay as supplementary cementitious material. Materials 2020, 13, 4734. [Google Scholar] [CrossRef]
- Li, C.; Ideker, J.H.; Drimalas, T.; Adams, M.P. Review on using calcined clays to mitigate alkali-silica reaction. In Proceedings of the 15th International Conference on Alkali-Aggregate Reaction in Concrete (ICAAR), São Paulo, Brazil, 3–7 July 2016. 10p. [Google Scholar]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Curcio, F.; DeAngelis, B.; Pagliolico, S. Metakaolin as a pozzolanic microfiller for high performance mortars. Cem. Concr. Res. 1998, 28, 803–809. [Google Scholar] [CrossRef]
- Sabir, B.B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Alujas, A.; Fernandez, R.; Quintana, R.; Scrivener, K.L.; Martirena, F. Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl. Clay Sci. 2015, 108, 94–101. [Google Scholar] [CrossRef]
- Li, C.; Ideker, J.H.; Drimalas, T. The Efficacy of calcined clays on mitigating alkali-silica reaction (ASR) in mortar and its influence on microstructure. In Calcined Clays for Sustainable Concrete; RILEM Book Series; Scrivener, K., Favier, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 10. [Google Scholar] [CrossRef]
- Aquino, W.; Lange, D.A.; Olek, J. The influence of metakaolin and silica fume on the chemistry of alkali–silica reaction products. Cem. Concr. Compos. 2001, 23, 485–493. [Google Scholar] [CrossRef]
- Shah, V.; Joseph, A.M.; Bishnoi, S. Durability characteristics of sustainable low clinker cements: A review. In Calcined Clays for Sustainable Concrete; RILEM Bookseries; Springer: Dordrecht, The Netherland, 2015; pp. 523–530. ISBN 9789401799393. [Google Scholar]
- Jóźwiak-Niedźwiedzka, D.; Jaskulski, R.; Dziedzic, K.; Antolik, A. Effect of low-quality calcined clay on the suppression of the alkali–silica reaction. Mater. Proc. 2023, 13, 15. [Google Scholar] [CrossRef]
- Zunino, F.; Boehm-Courjault, E.; Scrivener, K. The impact of calcite impurities in clays containing kaolinite on their reactivity in cement after calcination. Mater. Struct. 2020, 53, 44. [Google Scholar] [CrossRef]
- Heller-Kallai, L.; Lapides, I. Dehydroxylation of muscovite: Study of quenched samples. Phys. Chem. Miner. 2015, 42, 835–845. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Assessment of pozzolanic activity of different calcined clays. Cem. Concr. Comp. 2013, 37, 319–327. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Linhares Junior, J.A.; Rangel Garcez de Azevedo, A.; Teixeira Marvila, M.; Rainho Teixeira, S.; Fediuk, R.; Fontes Vieira, C.M. Influence of processing parameters variation on the development of geopolymeric ceramic blocks with calcined kaolinite clay. Case Stud. Constr. Mater. 2022, 16, e00897. [Google Scholar] [CrossRef]
- ASTM C1567-21; Standard Test Method for Determining the Potential Alkali-Silica Reactivity of Combinations of Cementitious Materials and Aggregate (Accelerated Mortar-Bar Method). ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Fratini, N. Solubilità dell’idrato di calcio in presenza di idrato di potassio e idrato di sodio. Ann. Di Chim. Appl. 1949, 39, 616–620. [Google Scholar]
- Fratini, N. Ricerche sulla calce di idrolisi nelle paste di cemento—Nota 1. Ann. Di Chim. Appl. 1949, 39, 41–49. [Google Scholar]
- Fratini, N. Ricerche sulla calce di idrolisi nelle paste di cemento—Nota 2. Proposta di un saggio per la valutazione chimica dei cementi pozzolanici. Ann. Di Chim. 1950, 40, 461–469. [Google Scholar]
- ASTM C1260-21; Standard Test Method for Potential Alkali Reactivity of Aggregates (Mortar-Bar Method). ASTM International: West Conshohocken, PA, USA, 2021. [CrossRef]
- Donatello, S.; Tyrer, M.; Cheeseman, C.R. Comparison of test methods to assess pozzolanic activity. Cem. Concr. Compos. 2010, 32, 121–127. [Google Scholar] [CrossRef]
- Antolik, A.; Jóźwiak-Niedźwiedzka, D. Assessment of the alkali-silica reactivity potential in granitic rocks. Constr. Build. Mater. 2021, 295, 123690. [Google Scholar] [CrossRef]
- Gridi-Bennadji, F.; Blanchart, P. Dehydroxylation kinetic and exfoliation of large muscovite flakes. J. Therm. Anal. Calorim. 2007, 90, 747–753. [Google Scholar] [CrossRef]
- Alujas, A.; Martirena, J.F. Influence of calcination temperature in the pozzolanic reactivity of a low grade kaolinitic clay. In Calcined Clays for Sustainable Concrete; RILEM Book Series; Scrivener, K., Favier, A., Eds.; Springer: Dordrecht, The Netherlands, 2015; Volume 10, pp. 331–338. [Google Scholar] [CrossRef]
- Khan, K.; Amin, M.N.; Saleem, M.U.; Qureshi, H.J.; Al-Faiad, M.A.; Qadir, M.G. Effect of fineness of basaltic volcanic ash on pozzolanic reactivity, ASR expansion and drying shrinkage of blended cement mortars. Materials 2019, 12, 2603. [Google Scholar] [CrossRef] [PubMed]
- Ramjan, S.; Tangchirapat, W.; Jaturapitakkul, C. Influence of bagasse ash with different fineness on alkali-silica reactivity of mortar. Mater. Constr. 2018, 68, e169. [Google Scholar] [CrossRef]
- Aydın, S.; Karatay, Ç.; Baradan, B. The effect of grinding process on mechanical properties and alkali–silica reaction resistance of fly ash incorporated cement mortars. Powder Technol. 2010, 197, 68–72. [Google Scholar] [CrossRef]
- Harish, K.V.; Rangaraju, P.R. Effect of blended fly ashes in mitigating alkali–silica reaction. Transport. Res. Rec. 2011, 2240, 80–88. [Google Scholar] [CrossRef]
- Oruji, S.; Brake, N.A.; Nalluri, L.; Guduru, R.K. Strength activity and microstructure of blended ultra-fine coal bottom ash-cement mortar. Constr. Build. Mater. 2017, 153, 317–326. [Google Scholar] [CrossRef]
Constituent | SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | SO3 | Cl | F |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Content, % | 58.23 | 2.04 | 26.18 | 1.53 | 0.03 | 0.27 | 0.22 | 0.13 | 1.86 | 0.06 | <0.01 | 0.01 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jóźwiak-Niedźwiedzka, D.; Jaskulski, R.; Dziedzic, K.; Antolik, A.; Dąbrowski, M. Influence of Calcination Temperature and Amount of Low-Grade Clay Replacement on Mitigation of the Alkali–Silica Reaction. Materials 2023, 16, 3210. https://doi.org/10.3390/ma16083210
Jóźwiak-Niedźwiedzka D, Jaskulski R, Dziedzic K, Antolik A, Dąbrowski M. Influence of Calcination Temperature and Amount of Low-Grade Clay Replacement on Mitigation of the Alkali–Silica Reaction. Materials. 2023; 16(8):3210. https://doi.org/10.3390/ma16083210
Chicago/Turabian StyleJóźwiak-Niedźwiedzka, Daria, Roman Jaskulski, Kinga Dziedzic, Aneta Antolik, and Mariusz Dąbrowski. 2023. "Influence of Calcination Temperature and Amount of Low-Grade Clay Replacement on Mitigation of the Alkali–Silica Reaction" Materials 16, no. 8: 3210. https://doi.org/10.3390/ma16083210
APA StyleJóźwiak-Niedźwiedzka, D., Jaskulski, R., Dziedzic, K., Antolik, A., & Dąbrowski, M. (2023). Influence of Calcination Temperature and Amount of Low-Grade Clay Replacement on Mitigation of the Alkali–Silica Reaction. Materials, 16(8), 3210. https://doi.org/10.3390/ma16083210