Plasmon-Assisted Trapping of Single Molecules in Nanogap
Abstract
:1. Introduction
2. Results and Discussion
3. Conclusions
4. Materials and Methods
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bustamante, C.J.; Chemla, Y.R.; Liu, S.; Wang, M.D. Optical tweezers in single-molecule biophysics. Nat. Rev. Dis. Primers 2021, 1, 25. [Google Scholar] [CrossRef] [PubMed]
- Kaufman, A.M.; Ni, K.-K. Quantum science with optical tweezer arrays of ultracold atoms and molecules. Nat. Phys. 2021, 17, 1324–1333. [Google Scholar] [CrossRef]
- Ashkin, A. Acceleration and Trapping of Particles by Radiation Pressure. Phys. Rev. Lett. 1970, 24, 156–159. [Google Scholar] [CrossRef]
- Zhang, Y.; Min, C.; Dou, X.; Wang, X.; Urbach, H.P.; Somekh, M.G.; Yuan, X. Plasmonic tweezers: For nanoscale optical trapping and beyond. Light Sci. Appl. 2021, 10, 59. [Google Scholar] [CrossRef]
- Maragò, O.M.; Jones, P.H.; Gucciardi, P.G.; Volpe, G.; Ferrari, A.C. Optical trapping and manipulation of nanostructures. Nat. Nanotechnol. 2013, 8, 807–819. [Google Scholar] [CrossRef]
- Miller, J.L. A triatomic molecule is laser cooled and trapped. Phys. Today 2022, 75, 16–19. [Google Scholar] [CrossRef]
- Wang, Q.; Goldsmith, R.H.; Jiang, Y.; Bockenhauer, S.D.; Moerner, W.E. Probing Single Biomolecules in Solution Using the Anti-Brownian Electrokinetic (ABEL) Trap. Acc. Chem. Res. 2012, 45, 1955–1964. [Google Scholar] [CrossRef]
- Juan, M.L.; Gordon, R.; Pang, Y.; Eftekhari, F.; Quidant, R. Self-induced back-action optical trapping of dielectric nanoparticles. Nat. Phys. 2009, 5, 915–919. [Google Scholar] [CrossRef]
- Berthelot, J.; Aćimović, S.S.; Juan, M.L.; Kreuzer, M.P.; Renger, J.; Quidant, R. Three-dimensional manipulation with scanning near-field optical nanotweezers. Nat. Nanotechnol. 2014, 9, 295–299. [Google Scholar] [CrossRef]
- Giorgio, V.; Giovanni, V. Numerical simulation of Brownian particles in optical force fields. In Proceedings of the SPIE NanoScience + Engineering, San Diego, CA, USA, 12 September 2013; p. 88102R. [Google Scholar]
- Tang, L.; Yi, L.; Jiang, T.; Ren, R.; Paulose Nadappuram, B.; Zhang, B.; Wu, J.; Liu, X.; Lindsay, S.; Edel, J.B.; et al. Measuring conductance switching in single proteins using quantum tunneling. Sci. Adv 2022, 8, eabm8149. [Google Scholar] [CrossRef]
- Lin, L.; Wang, M.; Peng, X.; Lissek, E.N.; Mao, Z.; Scarabelli, L.; Adkins, E.; Coskun, S.; Unalan, H.E.; Korgel, B.A.; et al. Opto-thermoelectric nanotweezers. Nat. Photonics 2018, 12, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Hong, C.; Yang, S.; Ndukaife, J.C. Stand-off trapping and manipulation of sub-10 nm objects and biomolecules using opto-thermo-electrohydrodynamic tweezers. Nat. Nanotechnol. 2020, 15, 908–913. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Guo, C.; Ni, L.; Zhao, X.; Zhang, S.; Xiang, D. In situ photoconductivity measurements of imidazole in optical fiber break-junctions. Nanoscale Horiz 2021, 6, 386–392. [Google Scholar] [CrossRef] [PubMed]
- Fu, T.; Frommer, K.; Nuckolls, C.; Venkataraman, L. Single-Molecule Junction Formation in Break-Junction Measurements. J. Phys. Chem. Lett. 2021, 12, 10802–10807. [Google Scholar] [CrossRef] [PubMed]
- Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Molecular-Scale Electronics: From Concept to Function. Chem. Rev. 2016, 116, 4318–4440. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Wang, T.; Ojambati, O.S.; Duffin, T.J.; Kang, K.; Lee, T.; Scheer, E.; Xiang, D.; Nijhuis, C.A. Plasmonic phenomena in molecular junctions: Principles and applications. Nat. Rev. Chem. 2022, 6, 681–704. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, H.; Lu, J.; Ni, L.; Liu, H.; Li, Q.; Qiu, M.; Xu, B.; Lee, T.; Zhao, Z.; et al. Atomic switches of metallic point contacts by plasmonic heating. Light Sci. Appl. 2019, 8, 34. [Google Scholar] [CrossRef]
- Yelin, T.; Chakrabarti, S.; Vilan, A.; Tal, O. Richness of molecular junction configurations revealed by tracking a full pull-push cycle. Nanoscale 2021, 13, 18434–18440. [Google Scholar] [CrossRef]
- Tan, Z.; Jiang, W.; Tang, C.; Chen, L.-C.; Chen, L.; Liu, J.; Liu, Z.; Zhang, H.-L.; Zhang, D.; Hong, W. The Control of Intramolecular Through-Bond and Through-Space Coupling in Single-Molecule Junctions. CCS Chem. 2021, 4, 713–721. [Google Scholar] [CrossRef]
- Yoo, P.S.; Kim, T. Linker-dependent Junction Formation Probability in Single-Molecule Junctions. Bull. Korean Chem. Soc. 2015, 36, 265–268. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, X.; Yin, K.; Zhang, S.; Zhao, Z.; Tan, M.; Xu, X.; Zhao, Z.; Wang, M.; Xu, B.; et al. In Situ Adjustable Nanogaps and In-Plane Break Junctions. Small Methods 2023, 2201427. [Google Scholar] [CrossRef] [PubMed]
- Zeng, B.-F.; Deng, R.; Zou, Y.-L.; Huo, C.-A.; Wang, J.-Y.; Yang, W.-M.; Liang, Q.-M.; Qiu, S.-J.; Feng, A.; Shi, J.; et al. Optical Trapping of a Single Molecule of Length Sub-1 nm in Solution. CCS Chem. 2022, 1–11. [Google Scholar] [CrossRef]
- Zhan, C.; Wang, G.; Yi, J.; Wei, J.-Y.; Li, Z.-H.; Chen, Z.-B.; Shi, J.; Yang, Y.; Hong, W.; Tian, Z.-Q. Single-Molecule Plasmonic Optical Trapping. Matter 2020, 3, 1350–1360. [Google Scholar] [CrossRef]
- Aragonès, A.C.; Domke, K.F. Nearfield trapping increases lifetime of single-molecule junction by one order of magnitude. Cell Rep. 2021, 2, 100389. [Google Scholar] [CrossRef]
- Choi, B.; Capozzi, B.; Ahn, S.; Turkiewicz, A.; Lovat, G.; Nuckolls, C.; Steigerwald, M.L.; Venkataraman, L.; Roy, X. Solvent-dependent conductance decay constants in single cluster junctions. Chem. Sci. 2016, 7, 2701–2705. [Google Scholar] [CrossRef]
- Fung, E.D.; Adak, O.; Lovat, G.; Scarabelli, D.; Venkataraman, L. Too Hot for Photon-Assisted Transport: Hot-Electrons Dominate Conductance Enhancement in Illuminated Single-Molecule Junctions. Nano Lett. 2017, 17, 1255–1261. [Google Scholar] [CrossRef]
- Xu, B.; Tao, N.J. Measurement of Single-Molecule Resistance by Repeated Formation of Molecular Junctions. Science 2003, 301, 1221–1223. [Google Scholar] [CrossRef]
- Zhang, S.; Guo, C.; Ni, L.; Hans, K.M.; Zhang, W.; Peng, S.; Zhao, Z.; Guhr, D.C.; Qi, Z.; Liu, H.; et al. In-situ control of on-chip angstrom gaps, atomic switches, and molecular junctions by light irradiation. Nano Today 2021, 39, 101226. [Google Scholar] [CrossRef]
- Zhan, C.; Wang, G.; Zhang, X.-G.; Li, Z.-H.; Wei, J.-Y.; Si, Y.; Yang, Y.; Hong, W.; Tian, Z.-Q. Single-Molecule Measurement of Adsorption Free Energy at the Solid–Liquid Interface. Angew. Chem. Int. Ed. 2019, 58, 14534–14538. [Google Scholar] [CrossRef]
- Bouloumis, T.D.; Nic Chormaic, S. From Far-Field to Near-Field Micro- and Nanoparticle Optical Trapping. Appl. Sci. 2020, 10, 1375. [Google Scholar] [CrossRef]
- Juan, M.L.; Righini, M.; Quidant, R. Plasmon nano-optical tweezers. Nat. Photonics 2011, 5, 349–356. [Google Scholar] [CrossRef]
- Hybertsen, M.S.; Venkataraman, L. Structure–Property Relationships in Atomic-Scale Junctions: Histograms and Beyond. Acc. Chem. Res. 2016, 49, 452–460. [Google Scholar] [CrossRef] [PubMed]
- Inkpen, M.S.; Liu, Z.F.; Li, H.; Campos, L.M.; Neaton, J.B.; Venkataraman, L. Non-chemisorbed gold–sulfur binding prevails in self-assembled monolayers. Nat. Chem. 2019, 11, 351–358. [Google Scholar] [CrossRef]
- Quek, S.Y.; Venkataraman, L.; Choi, H.J.; Louie, S.G.; Hybertsen, M.S.; Neaton, J.B. Amine−Gold Linked Single-Molecule Circuits: Experiment and Theory. Nano Lett. 2007, 7, 3477–3482. [Google Scholar] [CrossRef] [PubMed]
- Paulsson, M.; Krag, C.; Frederiksen, T.; Brandbyge, M. Conductance of Alkanedithiol Single-Molecule Junctions: A Molecular Dynamics Study. Nano Lett. 2009, 9, 117–121. [Google Scholar] [CrossRef]
- Kim, Y.-H.; Kim, H.S.; Lee, J.; Tsutsui, M.; Kawai, T. Stretching-Induced Conductance Variations as Fingerprints of Contact Configurations in Single-Molecule Junctions. J. Am. Chem. Soc. 2017, 139, 8286–8294. [Google Scholar] [CrossRef]
- Quintans, C.S.; Andrienko, D.; Domke, K.F.; Aravena, D.; Koo, S.; Díez-Pérez, I.; Aragonès, A.C. Tuning Single-Molecule Conductance by Controlled Electric Field-Induced trans-to-cis Isomerisation. Appl. Sci. 2021, 11, 3317. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, R.; Mayer, D.; Coppola, M.; Sun, L.; Kim, Y.; Wang, C.; Ni, L.; Chen, X.; Wang, M.; et al. Molecular Devices: Shaping the Atomic-Scale Geometries of Electrodes to Control Optical and Electrical Performance of Molecular Devices (Small 15/2018). Small 2018, 14, 1870066. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhang, J.; Adijiang, A.; Zhao, X.; Tan, M.; Xu, X.; Zhang, S.; Zhang, W.; Zhang, X.; Wang, H.; et al. Plasmon-Assisted Trapping of Single Molecules in Nanogap. Materials 2023, 16, 3230. https://doi.org/10.3390/ma16083230
Wang M, Zhang J, Adijiang A, Zhao X, Tan M, Xu X, Zhang S, Zhang W, Zhang X, Wang H, et al. Plasmon-Assisted Trapping of Single Molecules in Nanogap. Materials. 2023; 16(8):3230. https://doi.org/10.3390/ma16083230
Chicago/Turabian StyleWang, Maoning, Jieyi Zhang, Adila Adijiang, Xueyan Zhao, Min Tan, Xiaona Xu, Surong Zhang, Wei Zhang, Xinyue Zhang, Haoyu Wang, and et al. 2023. "Plasmon-Assisted Trapping of Single Molecules in Nanogap" Materials 16, no. 8: 3230. https://doi.org/10.3390/ma16083230
APA StyleWang, M., Zhang, J., Adijiang, A., Zhao, X., Tan, M., Xu, X., Zhang, S., Zhang, W., Zhang, X., Wang, H., & Xiang, D. (2023). Plasmon-Assisted Trapping of Single Molecules in Nanogap. Materials, 16(8), 3230. https://doi.org/10.3390/ma16083230