Oxygen Vacancy and Valence Band Structure of Ba0.5Sr0.5Fe1−xCuxO3−δ (x = 0–0.15) with Enhanced ORR Activity for IT-SOFCs
Abstract
:1. Introduction
2. Experimental Procedures
2.1. Synthesis
2.2. Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shao, Z.; Zhou, W.; Zhu, Z. Advanced synthesis of materials for intermediate-temperature solid oxide fuel cells. Prog. Mater. Sci. 2012, 57, 804–874. [Google Scholar] [CrossRef]
- Mejía Gómez, A.E.; Sacanell, J.; Huck-Iriart, C.; Ramos, C.P.; Soldati, A.L.; Figueroa, S.J.A.; Tabacniks, M.H.; Fantini, M.C.A.; Craievich, A.F.; Lamas, D.G. Crystal structure, cobalt and iron speciation and oxygen non-stoichiometry of La0.6Sr0.4Co1−yFeyO3−δ nanorods for IT-SOFC cathodes. J. Alloys Compd. 2020, 817, 153250. [Google Scholar] [CrossRef]
- Han, Z.; Bai, J.; Chen, X.; Zhu, X.; Zhou, D. Novel cobalt-free Pr2Ni1−xNbxO4 (x = 0, 0.05, 0.10, and 0.15) perovskite as the cathode material for IT-SOFC. Int. J. Hydrogen Energy 2021, 46, 11894–11907. [Google Scholar] [CrossRef]
- Zan, J.; Wang, S.; Zheng, D.; Li, F.; Chen, W.; Pei, Q.; Jiang, L. Characterization and functional application of PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode material for IT-SOFC. Mater. Res. Bull. 2021, 137, 111173. [Google Scholar] [CrossRef]
- Javed, M.S.; Shaheen, N.; Idrees, A.; Hu, C.; Raza, R. Electrochemical investigations of cobalt-free perovskite cathode material for intermediate temperature solid oxide fuel cell. Int. J. Hydrogen Energy 2017, 42, 10416–10422. [Google Scholar] [CrossRef]
- Zhou, Q.; Gao, Y.; Wang, F.; An, D.; Li, Y.; Zou, Y.; Li, Z.; Wang, W. Novel cobalt-free cathode material (Nd0.9La0.1)2(Ni0.74Cu0.21Al0.05)O4+δ for intermediate-temperature solid oxide fuel cells. Ceram. Int. 2015, 41, 639–643. [Google Scholar] [CrossRef]
- Li, M.; Zhao, X.; Min, H.; Yuan, G.; Ding, X. Synergistically enhancing CO2-tolerance and oxygen reduction reaction activity of cobalt-free dual-phase cathode for solid oxide fuel cells. Int. J. Hydrogen Energy 2020, 45, 34058–34068. [Google Scholar] [CrossRef]
- Wang, J.; Saccoccio, M.; Chen, D.; Gao, Y.; Chen, C.; Ciucci, F. The effect of A-site and B-site substitution on BaFeO3−δ: An investigation as a cathode material for intermediate-temperature solid oxide fuel cells. J. Power Source 2015, 297, 511–518. [Google Scholar] [CrossRef]
- Sun, W.; Shi, Z.; Fang, S.; Yan, L.; Zhu, Z.; Liu, W. A high performance BaZr0.1Ce0.7Y0.2O3−δ-based solid oxide fuel cell with a cobalt-free Ba0.5Sr0.5FeO3−δ–Ce0.8Sm0.2O2−δ composite cathode. Int. J. Hydrogen Energy 2010, 35, 7925–7929. [Google Scholar] [CrossRef]
- Chen, C.; Chen, D.; Gao, Y.; Shao, Z.; Ciucci, F. Computational and experimental analysis of Ba0.95La0.05FeO3−δ as a cathode material for solid oxide fuel cells. J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 14154–14163. [Google Scholar] [CrossRef]
- Penwell, W.D.; Giorgi, J.B. Conductivity of cerium doped BaFeO3−δ and applications for the detection of oxygen. Sens. Actuators B Chem. 2014, 191, 171–177. [Google Scholar] [CrossRef]
- Roohandeh, T.; Saievar-Iranizad, E. Ni- and Cu-doping effects on formation and migration energies of oxygen vacancies in Ba0.5Sr0.5Fe1−x(Cu/Ni)xO3−δ perovskites: A DFT + U study. Appl. Phys. A Mater. Sci. Process. 2019, 125, 552. [Google Scholar] [CrossRef]
- Gao, L.; Zhu, M.; Xia, T.; Li, Q.; Li, T.; Zhao, H. Ni-doped BaFeO3−δ perovskite oxide as highly active cathode electrocatalyst for intermediate-temperature solid oxide fuel cells. Electrochim. Acta 2018, 289, 428–436. [Google Scholar] [CrossRef]
- Lu, Y.; Zhao, H.; Chang, X.; Du, X.; Li, K.; Ma, Y.; Yi, S.; Du, Z.; Zheng, K.; Świerczek, K. Novel cobalt-free BaFe1−xGdxO3−δ perovskite membranes for oxygen separation. J. Mater. Chem. A Mater. Energy Sustain. 2016, 4, 10454–10466. [Google Scholar] [CrossRef]
- Lu, J.; Yin, Y.-M.; Ma, Z.-F. Preparation and characterization of new cobalt-free cathode Pr0.5Sr0.5Fe0.8Cu0.2O3−δ for IT-SOFC. Int. J. Hydrogen Energy 2013, 38, 10527–10533. [Google Scholar] [CrossRef]
- Yin, J.-W.; Yin, Y.-M.; Lu, J.; Zhang, C.; Minh, N.Q.; Ma, Z.-F. Structure and properties of novel cobalt-free oxides NdxSr1–xFe0.8Cu0.2O3−δ (0.3 ≤ x ≤ 0.7) as cathodes of intermediate temperature solid oxide fuel cells. J. Phys. Chem. C Nanomater. Interfaces 2014, 118, 13357–13368. [Google Scholar] [CrossRef]
- Niemczyk, A.; Zheng, K.; Cichy, K.; Berent, K.; Küster, K.; Starke, U.; Poudel, B.; Dabrowski, B.; Świerczek, K. High Cu content LaNi1−xCuxO3−δ perovskites as candidate air electrode materials for Reversible Solid Oxide Cells. Int. J. Hydrogen Energy 2020, 45, 29449–29464. [Google Scholar] [CrossRef]
- Lach, J.; Zheng, K.; Kluczowski, R.; Niemczyk, A.; Zhao, H.; Chen, M. Tuning Cu-Content La1−xSrxNi1−yCuyO3−δ with Strontium Doping as Cobalt-Free Cathode Materials for High-Performance Anode-Supported IT-SOFCs. Materials 2022, 15, 8737. [Google Scholar] [CrossRef]
- Fitriana, F.; Baity, P.S.N.; Zainuri, M.; Kidkhunthod, P.; Suasmoro, S. Crystal structure and Cu/Fe K-edge analysis of Ba0.5Sr0.5Fe1−xCuxO3−δ (x = 0–0.2) and the influence on conductivity. J. Phys. Chem. Solids 2021, 154, 110065. [Google Scholar] [CrossRef]
- Ishihara, T. (Ed.) Perovskite Oxide for Solid Oxide Fuel Cells, 2009th ed.; Springer: New York, NY, USA, 2014. [Google Scholar]
- Hardin, W.G.; Mefford, J.T.; Slanac, D.A.; Patel, B.B.; Wang, X.; Dai, S.; Zhao, X.; Ruoff, R.S.; Johnston, K.P.; Stevenson, K.J. Tuning the electrocatalytic activity of perovskites through active site variation and support interactions. Chem. Mater. 2014, 26, 3368–3376. [Google Scholar] [CrossRef]
- Jung, N.; Sohn, Y.; Park, J.H.; Nahm, K.S.; Kim, P.; Yoo, S.J. High-performance PtCux@Pt core-shell nanoparticles decorated with nanoporous Pt surfaces for oxygen reduction reaction. Appl. Catal. B 2016, 196, 199–206. [Google Scholar] [CrossRef]
- Zhu, Z.; Shi, Y.; Aruta, C.; Yang, N. Improving electronic conductivity and oxygen reduction activity in Sr-doped lanthanum cobaltite thin films: Cobalt valence state and electronic band structure effects. ACS Appl. Energy Mater. 2018, 1, 5308–5317. [Google Scholar] [CrossRef]
- Mushtaq, N.; Lu, Y.; Xia, C.; Dong, W.; Wang, B.; Wang, X.; Shah, M.A.K.Y.; Rauf, S.; Nie, J.; Hu, E.; et al. Design principle and assessing the correlations in Sb-doped Ba0.5Sr0.5FeO3–δ perovskite oxide for enhanced oxygen reduction catalytic performance. J. Catal. 2021, 395, 168–177. [Google Scholar] [CrossRef]
- Wang, Z.; Lv, P.; Yang, L.; Guan, R.; Jiang, J.; Jin, F.; He, T. Ba0.95La0.05Fe0.8Zn0.2O3−δ cobalt-free perovskite as a triple-conducting cathode for proton-conducting solid oxide fuel cells. Ceram. Int. 2020, 46, 18216–18223. [Google Scholar] [CrossRef]
- Meng, F.; Xia, T.; Wang, J.; Shi, Z.; Lian, J.; Zhao, H.; Bassat, J.-M.; Grenier, J.-C. Evaluation of layered perovskites YBa1−xSrxCo2O5+δ as cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 2014, 39, 4531–4543. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Tang, L. X-ray photoelectron spectroscopic studies of Ba0.5Sr0.5Co0.8Fe0.2O3−δ cathode for solid oxide fuel cells. Int. J. Hydrogen Energy 2009, 34, 435–439. [Google Scholar] [CrossRef]
- Yao, C.; Yang, J.; Zhang, H.; Meng, J.; Meng, F. Cobalt-free perovskite SrTa0.1Mo0.1Fe0.8O3−δ as cathode for intermediate-temperature solid oxide fuel cells. Int. J. Energy Res. 2020, 44, 925–933. [Google Scholar] [CrossRef]
- Sun, Q.; Sun, L.; Dou, Y.; Li, Q.; Li, N.; Huo, L.; Zhao, H. Insights into the oxygen reduction reaction on Cu-doped SrFeO3−δ cathode for solid oxide fuel cells. J. Power Source 2021, 497, 229877. [Google Scholar] [CrossRef]
- Yao, C.; Yang, J.; Chen, S.; Meng, J.; Cai, K.; Zhang, Q. Copper doped SrFe0.9−xCuW0.1O3−δ (x = 0–0.3) perovskites as cathode materials for IT-SOFCs. J. Alloys Compd. 2021, 868, 159127. [Google Scholar] [CrossRef]
- Lim, C.; Yang, Y.; Sin, Y.-W.; Choi, S.; Kim, G. Ca- and Ni-doped pr0.5Ba0.5FeO3−δ as a highly active and robust cathode for high-temperature solid oxide fuel cell. Energy Fuels 2020, 34, 11458–11463. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, H.; Liu, X.; Meng, J.; Meng, J.; Meng, F. A niobium and tungsten co-doped SrFeO3−δ perovskite as cathode for intermediate temperature solid oxide fuel cells. Ceram. Int. 2019, 45, 7351–7358. [Google Scholar] [CrossRef]
- Yao, C.; Meng, J.; Liu, X.; Zhang, X.; Meng, F.; Wu, X.; Meng, J. Effects of Bi doping on the microstructure, electrical and electrochemical properties of La2−xBixCu0.5Mn1.5O6 (x = 0, 0.1 and 0.2) perovskites as novel cathodes for solid oxide fuel cells. Electrochim. Acta 2017, 229, 429–437. [Google Scholar] [CrossRef]
- Wu, Y.; Li, K.; Yang, Y.; Song, W.; Ma, Z.; Chen, H.; Ou, X.; Zhao, L.; Khan, M.; Ling, Y. Investigation of Fe-substituted in BaZr0.8Y0.2O3−δ proton conducting oxides as cathode materials for protonic ceramics fuel cells. J. Alloys Compd. 2020, 814, 152220. [Google Scholar] [CrossRef]
- Pramana, S.S.; Cavallaro, A.; Li, C.; Handoko, A.D.; Chan, K.W.; Walker, R.J.; Regoutz, A.; Herrin, J.S.; Yeo, B.S.; Payne, D.J.; et al. Crystal structure and surface characteristics of Sr-doped GdBaCo2O6−δ double perovskites: Oxygen evolution reaction and conductivity. J. Mater. Chem. A Mater. Energy Sustain. 2018, 6, 5335–5345. [Google Scholar] [CrossRef]
- Marasi, M.; Panunzi, A.P.; Duranti, L.; Lisi, N.; Di Bartolomeo, E. Enhancing oxygen reduction activity and structural stability of la0.6Sr0.4FeO3−δ by 1 mol % pt and Ru B-site doping for application in all-perovskite IT-SOFCs. ACS Appl. Energy Mater. 2022, 5, 2918–2928. [Google Scholar] [CrossRef]
- Xie, D.; Guo, W.; Guo, R.; Liu, Z.; Sun, D.; Meng, L.; Zheng, L.; Wang, B. Synthesis and electrochemical properties of BaFe1−xCuxO3−δPerovskite oxide for IT-SOFC cathode. Fuel Cells 2016, 16, 829–838. [Google Scholar] [CrossRef]
- Sun, W.; Yan, L.; Zhang, S.; Liu, W. Crystal structure, electrical conductivity and sintering of Ba0.5Sr0.5ZnxFe1−xO3−δ. J. Alloys Compd. 2009, 485, 872–875. [Google Scholar] [CrossRef]
- Wei, Z.; Li, Z.; Wang, Z.; Zhao, Y.; Wang, J.; Chai, J. A free-cobalt barium ferrite cathode with improved resistance against CO2 and water vapor for protonic ceramic fuel cells. Int. J. Hydrogen Energy 2022, 47, 13490–13501. [Google Scholar] [CrossRef]
- Li, H.; Lü, Z. A highly stable cobalt-free LaBa0.5Sr0.5Fe2O6−δ oxide as a high performance cathode material for solid oxide fuel cells. Int. J. Hydrogen Energy 2020, 45, 19831–19839. [Google Scholar] [CrossRef]
- Yang, G.; Su, C.; Chen, Y.; Tadé, M.O.; Shao, Z. Nano La0.6Ca0.4Fe0.8Ni0.2O3−δ decorated porous doped ceria as a novel cobalt-free electrode for “symmetrical” solid oxide fuel cells. J. Mater. Chem. A Mater. Energy Sustain. 2014, 2, 19526–19535. [Google Scholar] [CrossRef]
- Niu, Y.; Zhou, W.; Sunarso, J.; Ge, L.; Zhu, Z.; Shao, Z. High performance cobalt-free perovskite cathode for intermediate temperature solid oxide fuel cells. J. Mater. Chem. 2010, 20, 9619–9622. [Google Scholar] [CrossRef]
- Ling, Y.; Zhao, L.; Lin, B.; Dong, Y.; Zhang, X.; Meng, G.; Liu, X. Investigation of cobalt-free cathode material Sm0.5Sr0.5Fe0.8Cu0.2O3−δ for intermediate temperature solid oxide fuel cell. Int. J. Hydrogen Energy 2010, 35, 6905–6910. [Google Scholar] [CrossRef]
- Huang, S.; Wang, G.; Sun, X.; Lei, C.; Li, T.; Wang, C. Cobalt-free perovskite Ba0.5Sr0.5Fe0.9Nb0.1O3−δ as a cathode material for intermediate temperature solid oxide fuel cells. J. Alloys Compd. 2012, 543, 26–30. [Google Scholar] [CrossRef]
Parameters | Composition | |||
---|---|---|---|---|
BSF | BSFCu0.05 | BSFCu0.10 | BSFCu0.15 | |
a = b = c [Å] | 3.938(6) | 3.940(4) | 3.943(7) | 3.946(5) |
Volume [Å3] | 61.0699(9) | 61.1630(1) | 61.3028(6) | 61.4428(3) |
Space group | ||||
Rwp [%] | 6.285 | 7.211 | 7.412 | 6.568 |
Rexp [%] | 3.792 | 3.281 | 3.414 | 3.364 |
χ2 | 2.747 | 4.832 | 4.715 | 3.811 |
Sample | Fe3+ (%) | Fe4+ (%) | Cu+ (%) | Cu2+ (%) | Average Oxidation State | δ0 | Olat (%) | Oads (%) | Omoi (%) | Oads/Olat |
---|---|---|---|---|---|---|---|---|---|---|
BSF | 41.7 | 58.3 | - | - | +3.583 | 0.21 | 38.6 | 59.5 | 1.9 | 1.54 |
BSFCu0.05 | 43.7 | 56.3 | 42.6 | 57.4 | +3.464 | 0.27 | 37.3 | 59.6 | 3.1 | 1.60 |
BSFCu0.10 | 46.8 | 53.2 | 46.9 | 53.1 | +3.332 | 0.33 | 36.7 | 59.5 | 3.8 | 1.62 |
BSFCu0.15 | 48.9 | 51.1 | 49.5 | 50.5 | +3.210 | 0.39 | 36.6 | 60.3 | 3.1 | 1.65 |
Sample | RHF (Ω) | RMF (Ω) | RLF (Ω) | Rp (Ω) | ASR (Ω cm2) |
---|---|---|---|---|---|
BSF | 0.141 | 0.285 | 0.529 | 0.955 | 0.135 |
BSFCu0.05 | 0.081 | 0.170 | 0.350 | 0.602 | 0.085 |
BSFCu0.10 | 0.073 | 0.100 | 0.145 | 0.318 | 0.045 |
BSFCu0.15 | 0.034 | 0.054 | 0.173 | 0.262 | 0.037 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lim, T.; Jo, K.; Lee, H. Oxygen Vacancy and Valence Band Structure of Ba0.5Sr0.5Fe1−xCuxO3−δ (x = 0–0.15) with Enhanced ORR Activity for IT-SOFCs. Materials 2023, 16, 3231. https://doi.org/10.3390/ma16083231
Lim T, Jo K, Lee H. Oxygen Vacancy and Valence Band Structure of Ba0.5Sr0.5Fe1−xCuxO3−δ (x = 0–0.15) with Enhanced ORR Activity for IT-SOFCs. Materials. 2023; 16(8):3231. https://doi.org/10.3390/ma16083231
Chicago/Turabian StyleLim, Taeheun, Kanghee Jo, and Heesoo Lee. 2023. "Oxygen Vacancy and Valence Band Structure of Ba0.5Sr0.5Fe1−xCuxO3−δ (x = 0–0.15) with Enhanced ORR Activity for IT-SOFCs" Materials 16, no. 8: 3231. https://doi.org/10.3390/ma16083231
APA StyleLim, T., Jo, K., & Lee, H. (2023). Oxygen Vacancy and Valence Band Structure of Ba0.5Sr0.5Fe1−xCuxO3−δ (x = 0–0.15) with Enhanced ORR Activity for IT-SOFCs. Materials, 16(8), 3231. https://doi.org/10.3390/ma16083231