Research Progress of Laser Cladding on the Surface of Titanium and Its Alloys
Abstract
:1. Introduction
1.1. Surface Modification for Ti and Its Alloys
1.1.1. Buttering Welding
1.1.2. Arc Cladding
1.1.3. Plasma Cladding
1.1.4. Electron Beam Cladding
1.1.5. Laser Cladding
2. LC Processing
2.1. LC Processing Technology
2.2. LC Processing Parameters
2.3. Auxiliary Technology
3. LC Materials
3.1. Metal Alloy Powders
3.1.1. Self-Fluxing Alloy Powders
3.1.2. High-Entropy Alloy Powders
3.2. Ceramics and Ceramic Composite Powders
3.2.1. Pure Ceramic Powders
3.2.2. Ceramic/Metal Composite Powders
3.2.3. Bioceramic Composite Powders
3.3. Rare-Earth-Oxide-Doped Powders
4. Functional Coatings
4.1. Wear-Resistant Coatings
4.2. Corrosion Resistant Coatings
4.3. High-Temperature Oxidation-Resistant Coatings
4.4. Biocompatible Coatings
4.5. Other Functional Coatings
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gomez-Gallegos, A.; Mandal, P.; Gonzalez, D.; Zuelli, N.; Blackwell, P. Studies on Titanium Alloys for Aerospace Application. In Defect and Diffusion Forum; Trans Tech Publications Ltd: Stafa-Zurich, Switzerland, 2018; pp. 419–423. [Google Scholar]
- Wang, M.; Lin, X.; Huang, W. Laser additive manufacture of titanium alloys. Mater. Technol. 2016, 31, 90–97. [Google Scholar] [CrossRef]
- Whittaker, M.T. Titanium Alloys 2017; MDPI: Basel, Switzerland, 2018; Volume 8, p. 319. [Google Scholar]
- Bache, M. Titanium Alloys: Processing and Properties; MDPI: Basel, Switzerland, 2021; Volume 11, p. 1426. [Google Scholar]
- Jia, Z.; Xu, X.; Zhu, D.; Zheng, Y. Design, Printing, and Engineering of Regenerative Biomaterials for Personalized Bone Healthcare. Prog. Mater. Sci. 2023, 134, 101072. [Google Scholar] [CrossRef]
- Bahl, S.; Suwas, S.; Chatterjee, K. Comprehensive review on alloy design, processing, and performance of β Titanium alloys as biomedical materials. Int. Mater. Rev. 2020, 66, 114–139. [Google Scholar] [CrossRef]
- Boyer, R.R. An overview on the use of titanium in the aerospace industry. Mater. Sci. Eng. A 1996, 213, 103–114. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, J.; Chen, J.; Zhao, J.; Yu, Y.; Zhou, H. Improvement of the oxidation and wear resistance of pure Ti by laser cladding at elevated temperature. Surf. Coat. Technol. 2010, 205, 2142–2151. [Google Scholar] [CrossRef]
- Bondioli, I.R.; Bottino, M.A. Evaluation of shear bond strength at the interface of two porcelains and pure titanium injected into the casting mold at three different temperatures. J. Prosthet. Dent. 2004, 91, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.C.; Chen, L.Y. A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 2019, 21, 1801215. [Google Scholar] [CrossRef]
- Anil Kumar, V.; Gupta, R.; Prasad, M.; Narayana Murty, S. Recent advances in processing of titanium alloys and titanium aluminides for space applications: A review. J. Mater. Res. 2021, 36, 689–716. [Google Scholar] [CrossRef]
- Wang, W.; Xu, X.; Ma, R.; Xu, G.; Liu, W.; Xing, F. The influence of heat treatment temperature on microstructures and mechanical properties of titanium alloy fabricated by laser melting deposition. Materials 2020, 13, 4087. [Google Scholar] [CrossRef]
- Feng, Q.; Duan, B.; Jiao, L.; Chen, G.; Zou, X.; Lu, X.; Li, C. Microstructure and tensile properties of a multi-alloyed α+ β titanium alloy Ti4. 5Al10. 5V3Fe. Mater. Chem. Phys. 2023, 295, 127110. [Google Scholar] [CrossRef]
- Wang, X.-Q.; Zhang, Y.-S.; Han, W.-Z. Design of high strength and wear-resistance β-Ti alloy via oxygen-charging. Acta Mater. 2022, 227, 117686. [Google Scholar] [CrossRef]
- Miyazaki, S. My experience with Ti–Ni-based and Ti-based shape memory alloys. Shape Mem. Superelasticity 2017, 3, 279–314. [Google Scholar] [CrossRef]
- Dalle, F.; Perrin, E.; Vermaut, P.; Masse, M.; Portier, R. Interface mobility in Ni49.8Ti42.2Hf8 shape memory alloy. Acta Mater. 2002, 50, 3557–3565. [Google Scholar] [CrossRef]
- Qu, J.; Blau, P.J.; Watkins, T.R.; Cavin, O.B.; Kulkarni, N.S. Friction and wear of titanium alloys sliding against metal, polymer, and ceramic counterfaces. Wear 2005, 258, 1348–1356. [Google Scholar] [CrossRef]
- Yu, H.; Lu, L.; Wang, Z.; Chen, C. Microstructure and Wear Resistance of a Composite Coating Prepared by Laser Alloying with Ni-Coated Graphite on Ti-6Al-4V Alloy. Materials 2022, 15, 5512. [Google Scholar] [CrossRef] [PubMed]
- Noumbissi, S.; Scarano, A.; Gupta, S. A literature review study on atomic ions dissolution of titanium and its alloys in implant dentistry. Materials 2019, 12, 368. [Google Scholar] [CrossRef] [PubMed]
- Kumazawa, R.; Watari, F.; Takashi, N.; Tanimura, Y.; Uo, M.; Totsuka, Y. Effects of Ti ions and particles on neutrophil function and morphology. Biomaterials 2002, 23, 3757–3764. [Google Scholar] [CrossRef]
- Azwan, M.; Maleque, M.; Rahman, M. TIG torch surfacing of metallic materials–a critical review. Trans. Inst. Met. Finish 2019, 97, 12–21. [Google Scholar] [CrossRef]
- Gao, F.; Zhou, J.; Zhou, J.; Shen, L.; Zhang, J.; Tao, Y.; Li, M. Microstructure and properties of surfacing layers of dies manufactured by bimetal-gradient-layer surfacing technology before and after service. Int. J. Adv. Manuf. Technol. 2017, 88, 1289–1297. [Google Scholar] [CrossRef]
- Shan, J.; Dong, Z.; Xu, B. The development of surfacing welding technology in China and its application status in basic industries. Surf. Eng. 2002, 15, 19–22. [Google Scholar]
- Shi, Z.-P.; Wang, Z.-B.; Wang, J.-Q.; Qiao, Y.-X.; Chen, H.-N.; Xiong, T.-Y.; Zheng, Y.-G. Effect of Ni interlayer on cavitation erosion resistance of NiTi cladding by tungsten inert gas (TIG) surfacing process. Acta Metall. Sin. Engl. 2020, 33, 415–424. [Google Scholar] [CrossRef]
- Choudhary, L.; Chhotani, P.; Menghani, J. Study on wear behaviour on hardfacing alloy. Trans. Indian Inst. Met. 2019, 72, 2465–2475. [Google Scholar] [CrossRef]
- Rohan, P.; Lukáč, F.; Kolaříková, M.; Krum, S.; Horník, J.; Lukeš, J.; Šepitka, J.; Kuchař, J. Pulsed Plasma Surfacing of Titanium Matrix Cermet Based on B4C. J. Therm. Spray. Technol. 2022, 31, 1975–1984. [Google Scholar] [CrossRef]
- Fan, Q.; Chen, C.; Fan, C.; Liu, Z.; Cai, X.; Lin, S.; Yang, C. Effect of high Fe content on the microstructure, mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy coatings prepared by gas tungsten arc cladding. Surf. Coat. Technol. 2021, 418, 127242. [Google Scholar] [CrossRef]
- Klimpel, A.; Dobrzański, L.; Lisiecki, A.; Janicki, D. The study of the technology of laser and plasma surfacing of engine valves face made of X40CrSiMo10-2 steel using cobalt-based powders. J. Mater. Process Technol. 2006, 175, 251–256. [Google Scholar] [CrossRef]
- Huang, J.; Liu, S.; Yu, S.; Yu, X.; Chen, H.; Fan, D. Arc deposition of wear resistant layer TiN on Ti6Al4V using simultaneous feeding of nitrogen and wire. Surf. Coat. Technol. 2020, 381, 125141. [Google Scholar] [CrossRef]
- Bao, Y.; Huang, L.; An, Q.; Jiang, S.; Zhang, R.; Geng, L.; Ma, X. Metal transfer and microstructure evolution during wire-feed deposition of TiB/Ti composite coating. J. Mater. Process Technol. 2019, 274, 116298. [Google Scholar] [CrossRef]
- Huang, J.; Liu, S.; Wu, L.; Yu, S.; Yu, X.; Yuan, W.; Liao, Y.; Fan, D. The microstructures and corrosion behavior of cladding layer on Ti-6Al-4V alloy using arc deposition with Ar and CO2 mixed shield gas. J. Alloys Compd. 2021, 857, 157557. [Google Scholar] [CrossRef]
- Fu, F.; Zhang, Y.; Chang, G.; Dai, J. Analysis on the physical mechanism of laser cladding crack and its influence factors. Optik 2016, 127, 200–202. [Google Scholar] [CrossRef]
- Zhou, Y.-X.; Zhang, J.; Xing, Z.-G.; Wang, H.-D.; Lv, Z.-L. Microstructure and properties of NiCrBSi coating by plasma cladding on gray cast iron. Surf. Coat. Technol. 2019, 361, 270–279. [Google Scholar] [CrossRef]
- Zhang, R.; Jiang, F.; Chen, S. Comparison of energy acted on workpiece among twin-body plasma arc welding, non-transferred plasma arc welding and plasma arc welding. J. Manuf. Process 2016, 24, 152–160. [Google Scholar] [CrossRef]
- Liu, J. TiC/Fe cermet coating by plasma cladding using asphalt as a carbonaceous precursor. Prog. Nat. Sci. 2008, 18, 447–454. [Google Scholar] [CrossRef]
- Cao, L.; Xia, Y.; Cui, H.; Li, Q.; Zhu, B.; Wang, Q. Microstructural characteristics of TiB2–TiC–NiAl composite coatings via plasma cladding process. Surf. Eng. 2019, 35, 997–1002. [Google Scholar] [CrossRef]
- Anikeev, S.G.; Shabalina, A.V.; Kulinich, S.A.; Artyukhova, N.V.; Korsakova, D.R.; Yakovlev, E.V.; Vlasov, V.A.; Kokorev, O.V.; Hodorenko, V.N. Preparation and Electron-Beam Surface Modification of Novel TiNi Material for Medical Applications. Appl. Sci. 2021, 11, 4372. [Google Scholar] [CrossRef]
- Chen, J.; Liu, H.; Peng, Z.; Tang, J. Study on the Solidification Behavior of Inconel617 Electron Beam Cladding NiCoCrAlY: Numerical and Experimental Simulation. Coatings 2022, 12, 58. [Google Scholar] [CrossRef]
- Zhang, L.C.; Liu, Y.; Li, S.; Hao, Y. Additive manufacturing of titanium alloys by electron beam melting: A review. Adv. Eng. Mater. 2018, 20, 1700842. [Google Scholar] [CrossRef]
- Song, R.; Zhang, K.; Chen, G. Electron beam surface remelting of AISI D2 cold-worked die steel. Surf. Coat. Technol. 2002, 157, 1–4. [Google Scholar] [CrossRef]
- Petrov, P. Electron beam surface remelting and alloying of aluminium alloys. Vacuum 1997, 48, 49–50. [Google Scholar] [CrossRef]
- Liu, D.; Chen, Q.; Wang, D.; Zhang, R.; Wang, W. Formation and Tribological Properties of Electron Beam Cladding (Ti, W) C1-x Composite Coatings on Ti-6Al-4V Surfaces. Acta Metall. Sin. 2020, 56, 1025–1035. [Google Scholar]
- Bataev, I.; Lazurenko, D.; Golkovskii, M.; Bataev, A.; Matts, O. Surface Hardening of Titanium Under Non-Vacuum Electron-Beam Cladding of an Aluminum-Containing Powder Mixture. Met. Sci. Heat Treat 2019, 60, 619–624. [Google Scholar] [CrossRef]
- Lenivtseva, O.; Bataev, I.; Golkovskii, M.; Bataev, A.; Samoilenko, V.; Plotnikova, N. Structure and properties of titanium surface layers after electron beam alloying with powder mixtures containing carbon. Appl. Surf. Sci. 2015, 355, 320–326. [Google Scholar] [CrossRef]
- Ouyang, W.; Xu, Z.; Chao, Y.; Liu, Y.; Luo, W.; Jiao, J.; Sheng, L.; Zhang, W. Effect of electrostatic field on microstructure and mechanical properties of the 316L stainless steel modified layer fabricated by laser cladding. Mater. Charact. 2022, 191, 112123. [Google Scholar] [CrossRef]
- Liu, Y.; Ouyang, W.; Wu, H.; Xu, Z.; Sheng, L.; Zou, Q.; Zhang, M.; Zhang, W.; Jiao, J. Improving surface quality and superficial microstructure of LDED Inconel 718 superalloy processed by hybrid laser polishing. J. Mater. Process Technol. 2022, 300, 117428. [Google Scholar] [CrossRef]
- Singh, S.; Goyal, D.K.; Kumar, P.; Bansal, A. Laser cladding technique for erosive wear applications: A review. Mater. Res. Express 2020, 7, 012007. [Google Scholar] [CrossRef]
- Wang, D.; Zhu, Y.; Qu, G.; Zhou, X. Research on Dilution of Laser Cladding Assisted by Pulsed Current Based on Orthogonal Experiment. In Proceedings of the Journal of Physics: Conference Series, Moscow, Russia, 21–22 April 2021; p. 012087. [Google Scholar]
- Arif, Z.U.; Khalid, M.Y.; ur Rehman, E.; Ullah, S.; Atif, M.; Tariq, A. A review on laser cladding of high-entropy alloys, their recent trends and potential applications. J. Manuf. Process 2021, 68, 225–273. [Google Scholar] [CrossRef]
- Lu, X.; Lin, X.; Cao, Y.; Hu, J.; Gao, b.; Huang, W. Effects of process parameters and heat treatment on the phase composition of in-situ hydroxyapatite coatings synthesized by laser cladding on pure titanium surfaces. Rare Metal Mat. Eng. 2011, 40, 714–717. [Google Scholar]
- Feng, Y.; Feng, K.; Yao, C.; Li, Z.; Sun, J. Microstructure and properties of in-situ synthesized (Ti3Al + TiB)/Ti composites by laser cladding. Mater. Des. 2018, 157, 258–272. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, J.; Chen, Y.; Hou, Z.; Zhao, Q.; Li, Y.; Zhu, L.; Zhang, F.; Zhao, Y. On enhancing wear resistance of titanium alloys by laser cladded WC-Co composite coatings. Int. J. Refract Hard Met. 2022, 107, 105902. [Google Scholar] [CrossRef]
- Wu, D.; Hu, C.; Zhao, W.; Zhang, Y.; Zou, Y. Influence of external magnetic field on twin-wire indirect arc surfacing stainless steel layer. Vacuum 2019, 169, 108958. [Google Scholar] [CrossRef]
- Han, X.; Li, C.; Chen, X.; Jia, S. Numerical simulation and experimental study on the composite process of submerged arc cladding and laser cladding. Surf. Coat. Technol. 2022, 439, 128432. [Google Scholar] [CrossRef]
- Ding, H.; Dai, J.; Dai, T.; Sun, Y.; Lu, T.; Li, M.; Jia, X.; Huang, D. Effect of preheating/post-isothermal treatment temperature on microstructures and properties of cladding on U75V rail prepared by plasma cladding method. Surf. Coat. Technol. 2020, 399, 126122. [Google Scholar] [CrossRef]
- Fesharaki, M.N.; Shoja-Razavi, R.; Mansouri, H.A.; Jamali, H. Microstructure investigation of Inconel 625 coating obtained by laser cladding and TIG cladding methods. Surf. Coat. Technol. 2018, 353, 25–31. [Google Scholar] [CrossRef]
- Peng, Y.; Zhang, W.; Li, T.; Zhang, M.; Wang, L.; Song, Y.; Hu, S.; Hu, Y. Microstructures and mechanical properties of FeCoCrNi high entropy alloy/WC reinforcing particles composite coatings prepared by laser cladding and plasma cladding. Int. J. Refract Met. H 2019, 84, 105044. [Google Scholar] [CrossRef]
- Yuan, C.; Wang, B.; Wang, J.; Wang, Y.; Sheng, L.; Jiao, J.; Yao, J.; Huang, Y.; Zhang, W. Effects of incidence angle and optimization in femtosecond laser polishing of C/SiC composites. Ceram. Int. 2022, 48, 32290–32304. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Y.; Jiao, J.; Wang, H.; Wang, J.; Zhang, W.; Sheng, L. Numerical simulation on pulsed laser ablation of the single-crystal superalloy considering material moving front and effect of comprehensive heat dissipation. Micromachines 2021, 12, 225. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Jing, C.; Jiao, J.; Sun, S.; Sheng, L.; Zhang, Y.; Xia, H.; Zeng, K. Experimental Study on Carbon Fiber-Reinforced Composites Cutting with Nanosecond Laser. Materials 2022, 15, 6686. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, T.; Sun, J.; Jiang, S. Microstructure and properties of laser cladded B4C/TiC/Ni-based composite coating. Int. J. Refract Hard Met. 2020, 86, 105112. [Google Scholar] [CrossRef]
- Gedda, H.; Powell, J.; Wahlström, G.; Li, W.; Engström, H.; Magnusson, C. Energy redistribution during CO2 laser cladding. In Proceedings of the International Congress on Applications of Lasers & Electro-Optics, Jacksonville, FL, USA, 15–18 October 2001; pp. 549–558. [Google Scholar]
- Gao, J.; Wu, C.; Hao, Y.; Xu, X.; Guo, L. Numerical simulation and experimental investigation on three-dimensional modelling of single-track geometry and temperature evolution by laser cladding. Opt. Laser Technol. 2020, 129, 106287. [Google Scholar] [CrossRef]
- Rodrigues, M.B.; Silva, R.G.N.; Pereira, M.; Silva, R.H.G.E.; Teichmann, E.W. Effect of dynamic wire feeding on deposition quality in laser cladding process. J. Laser Appl. 2020, 32, 022065. [Google Scholar] [CrossRef]
- Chen, L.; Yu, T.; Chen, X.; Zhao, Y.; Guan, C. Process optimization, microstructure and microhardness of coaxial laser cladding TiC reinforced Ni-based composite coatings. Opt. Laser Technol. 2022, 152, 108129. [Google Scholar] [CrossRef]
- Zhang, H.; Lian, G.; Zhang, Y.; Pan, Y.; Cao, Q.; Yang, J.; Ke, D. The influence of powder size on the microstructure and properties of Mo2FeB2 coating fabricated via laser cladding with pre-placed powder. Int. J. Adv. Manuf. Technol. 2022, 120, 6041–6052. [Google Scholar] [CrossRef]
- Grohol, C.M.; Shin, Y.C.; Frank, A. Laser cladding of aluminum alloys with concurrent cryogenic quenching for improved microstructure and hardness. Surf. Coat. Technol. 2022, 439, 128460. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, F.; Zhang, H.; Zhang, T.; Wang, H.; Xu, Y.; Ma, Q. Influence of CeO2 addition on forming quality and microstructure of TiCx-reinforced CrTi4-based laser cladding composite coating. Mater. Charact. 2021, 171, 110732. [Google Scholar] [CrossRef]
- Xu, L.; Xiao, R.; Qu, G.; Wang, D. In Situ Synthesized Graded TiC Particulate Reinforced Ni-based Composite Coating Prepared by Laser Cladding. In Proceedings of the Intelligent Manufacturing and Automation Technology (MEMAT) 2021, Guilin, China, 15–17 January 2021; p. 012050. [Google Scholar]
- Grohol, C.M.; Shin, Y.C.; Frank, A. Laser cladding of aluminum alloy 6061 via off-axis powder injection. Surf. Coat. Technol. 2021, 415, 127099. [Google Scholar] [CrossRef]
- Toyserkani, E.; Khajepour, A.; Corbin, S.F. Laser Cladding; CRC press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Emamian, A.; Corbin, S.F.; Khajepour, A. Effect of laser cladding process parameters on clad quality and in-situ formed microstructure of Fe–TiC composite coatings. Surf. Coat. Technol. 2010, 205, 2007–2015. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, P.; Bai, P.; Su, K.; Su, H. TiBCN-ceramic-reinforced Ti-based coating by laser cladding: Analysis of processing conditions and coating properties. Coatings 2019, 9, 407. [Google Scholar] [CrossRef]
- Aghili, S.; Shamanian, M. Investigation of powder fed laser cladding of NiCr-chromium carbides single-tracks on titanium aluminide substrate. Opt. Laser Technol. 2019, 119, 105652. [Google Scholar] [CrossRef]
- Onwubolu, G.C.; Davim, J.P.; Oliveira, C.; Cardoso, A. Prediction of clad angle in laser cladding by powder using response surface methodology and scatter search. Opt. Laser Technol. 2007, 39, 1130–1134. [Google Scholar] [CrossRef]
- Sun, Y.; Hao, M. Statistical analysis and optimization of process parameters in Ti6Al4V laser cladding using Nd: YAG laser. Opt. Lasers Eng. 2012, 50, 985–995. [Google Scholar] [CrossRef]
- Chen, T.; Wu, W.; Li, W.; Liu, D. Laser cladding of nanoparticle TiC ceramic powder: Effects of process parameters on the quality characteristics of the coatings and its prediction model. Opt. Laser Technol. 2019, 116, 345–355. [Google Scholar] [CrossRef]
- Zhang, Y.; Gong, B.; Tang, Z.; Cao, W. Application of a Bio-Inspired Algorithm in the Process Parameter Optimization of Laser Cladding. Machines 2022, 10, 263. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W. Ultrasonic vibration-assisted (UV-A) manufacturing processes: State of the art and future perspectives. J. Manuf. Process 2020, 51, 174–190. [Google Scholar] [CrossRef]
- Ning, F.; Cong, W. Microstructures and mechanical properties of Fe-Cr stainless steel parts fabricated by ultrasonic vibration-assisted laser engineered net shaping process. Mater. Lett. 2016, 179, 61–64. [Google Scholar] [CrossRef]
- Zhu, L.; Yang, Z.; Xin, B.; Wang, S.; Meng, G.; Ning, J.; Xue, P. Microstructure and mechanical properties of parts formed by ultrasonic vibration-assisted laser cladding of Inconel 718. Surf. Coat. Technol. 2021, 410, 126964. [Google Scholar] [CrossRef]
- Mi, H.; Chen, T.; Deng, Z.; Li, S.; Liu, J.; Liu, D. Microstructure and Mechanical Properties of TiC/TiB Composite Ceramic Coatings In-Situ Synthesized by Ultrasonic Vibration-Assisted Laser Cladding. Coatings 2022, 12, 99. [Google Scholar] [CrossRef]
- Chen, C.; Deng, Q.; Song, J. The influence of Ni content and ultrasonic vibration to cracks in process of laser cladding. J. Trans. Nanjing Univ. Aeronaut. Astronaut. S 2005, 1, 44–48. [Google Scholar]
- Sheng, L.; Guo, J.; Zhou, L.; Ye, H. The effect of strong magnetic field treatment on microstructure and room temperature compressive properties of NiAl–Cr (Mo)–Hf eutectic alloy. Mater. Sci. Eng. A 2009, 500, 238–243. [Google Scholar] [CrossRef]
- Sheng, L.; Guo, J.; Ren, W.; Zhang, Z.; Ren, Z.; Ye, H. Preliminary investigation on strong magnetic field treated NiAl–Cr (Mo)–Hf near eutectic alloy. Intermetallics 2011, 19, 143–148. [Google Scholar] [CrossRef]
- Qi, K.; Yang, Y.; Sun, R.; Hu, G.; Lu, X.; Li, J.; Liang, W.; Jin, K.; Xiong, L. Effect of magnetic field on crack control of Co-based alloy laser cladding. Opt. Laser Technol. 2021, 141, 107129. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, P.; Yan, H.; Yu, Z.; Wu, D.; Shi, H.; Li, S.; Tian, Y. Magnetic-field-assisted laser cladding in the preparation of a crack-free Fe-Cr-Mo-CYB amorphous coating on steel. Philos. Mag. Lett. 2020, 100, 86–93. [Google Scholar] [CrossRef]
- Zhao, Y.; Wu, M.; Jiang, P.; Li, R.; Cheng, J.; Chen, Y. Microstructure of WTaNbMo refractory high entropy alloy coating fabricated by dynamic magnetic field assisted laser cladding process. J. Mater. Res. Technol. 2022, 20, 1908–1911. [Google Scholar] [CrossRef]
- Zhai, L.; Wang, Q.; Zhang, J.; Ban, C. Effect of alternating current electric field on microstructure and properties of laser cladding Ni–Cr–B–Si coating. Ceram. Int. 2019, 45, 16873–16879. [Google Scholar] [CrossRef]
- Huo, K.; Zhou, J.; Dai, F.; Xu, J. Particle distribution and microstructure of IN718/WC composite coating fabricated by electromagnetic compound field-assisted laser cladding. Appl. Surf. Sci. 2021, 545, 149078. [Google Scholar] [CrossRef]
- Dong, S.; Ma, Y.; Xu, B.; Han, W. Research status of laser cladding materials. Mater. Rev. 2006, 20, 5–9. [Google Scholar]
- Han, T.; Zhou, K.; Chen, Z.; Gao, Y. Research Progress on Laser Cladding Alloying and Composite Processing of Steel Materials. Metals 2022, 12, 2055. [Google Scholar] [CrossRef]
- Chang, C.; Liao, H.; Yi, L.; Dai, Y.; Cox, S.C.; Yan, M.; Liu, M.; Yan, X. Achieving ultra-high strength and ductility in Mg–9Al–1Zn-0.5 Mn alloy via selective laser melting. Adv. Powder Mater. 2022, 2, 100097. [Google Scholar] [CrossRef]
- Wang, C.; Xu, D.; Lin, L.; Li, S.; Hou, W.; He, Y.; Sheng, L.; Yi, C.; Zhang, X.; Li, H. Large-pore-size Ti6Al4V scaffolds with different pore structures for vascularized bone regeneration. Mater. Sci. Eng. C 2021, 131, 112499. [Google Scholar] [CrossRef]
- Tong, X.; Li, F.-H.; Liu, M.; Dai, M.-J.; Zhou, H. Thermal fatigue resistance of non-smooth cast iron treated by laser cladding with different self-fluxing alloys. Opt. Laser Technol. 2010, 42, 1154–1161. [Google Scholar] [CrossRef]
- Sheng, L.; Yang, F.; Xi, T.; Lai, C.; Ye, H. Influence of heat treatment on interface of Cu/Al bimetal composite fabricated by cold rolling. Compos. B. Eng. 2011, 42, 1468–1473. [Google Scholar] [CrossRef]
- Simunovic, K.; Havrlisan, S.; Saric, T.; Vukelic, D. Modeling and Optimization in Investigating Thermally Sprayed Ni-Based Self-Fluxing Alloy Coatings: A Review. Materials 2020, 13, 4584. [Google Scholar] [CrossRef]
- Umanskyi, O.; Pareiko, M.; Storozhenko, M.; Krasovskyy, V. Wetting and interfacial behavior of Fe-based self-fluxing alloy–refractory compound systems. J. Superhard Mater. 2017, 39, 99–105. [Google Scholar] [CrossRef]
- Meng, Q.; Geng, L.; Ni, D. Laser cladding NiCoCrAlY coating on Ti-6Al-4V. Mater. Lett. 2005, 59, 2774–2777. [Google Scholar] [CrossRef]
- Jeyaprakash, N.; Yang, C.-H.; Tseng, S.-P. Characterization and tribological evaluation of NiCrMoNb and NiCrBSiC laser cladding on near-α titanium alloy. Int. J. Adv. Manuf. Tech. 2020, 106, 2347–2361. [Google Scholar] [CrossRef]
- Sun, R.; Yang, D.; Guo, L.; Dong, S. Laser cladding of Ti-6Al-4V alloy with TiC and TiC + NiCrBSi powders. Surf. Coat. Technol. 2001, 135, 307–312. [Google Scholar] [CrossRef]
- Sakata, K.; Nakano, K.; Miyahara, H.; Matsubara, Y.; Ogi, K. Microstructure control of thermally sprayed Co-based self-fluxing alloy coatings by diffusion treatment. J. Therm. Spray Technol. 2007, 16, 991–997. [Google Scholar] [CrossRef]
- Sheng, L. A Co–Cr–Ni–W–C Alloy Processed by Multiple Rolling. Strength Mater. 2020, 52, 103–109. [Google Scholar] [CrossRef]
- Majumdar, J.D.; Manna, I.; Kumar, A.; Bhargava, P.; Nath, A. Direct laser cladding of Co on Ti–6Al–4V with a compositionally graded interface. J. Mater. Process Tech. 2009, 209, 2237–2243. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chen, C.; Dai, J. Microstructures and wear properties of laser cladding Co-based composite coatings on Ti–6Al–4V. Mater. Des. 2015, 80, 174–181. [Google Scholar] [CrossRef]
- Ge, X.; Zhong, Y.; Xu, X.; Tao, J.; Liu, Q.; Wu, G.; He, X. Study on Laser Alloying Ti-Al-Nb Coating on TC4 Titanium Alloy Surface. Rare Metal Mat. Eng. 2017, 46, 2266–2270. [Google Scholar]
- Weng, F.; Yu, H.; Chen, C.; Liu, J.; Zhao, L.; Dai, J. Microstructure and property of composite coatings on titanium alloy deposited by laser cladding with Co42+ TiN mixed powders. J. Alloys Compd. 2016, 686, 74–81. [Google Scholar] [CrossRef]
- Shasha, L.; Yuhang, W.; Weiping, Z. Microstructure and wear resistance of laser clad cobalt-based composite coating on TA15 surface. Rare Metal. Mat. Eng. 2014, 43, 1041–1046. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Liu, J.; Chen, C.; Dai, J.; Zhao, Z. Microstructure and wear property of the Ti5Si3/TiC reinforced Co-based coatings fabricated by laser cladding on Ti-6Al-4V. Opt. Laser Technol. 2017, 92, 156–162. [Google Scholar] [CrossRef]
- Meng, Q.; Geng, L.; Zhang, B. Laser cladding of Ni-base composite coatings onto Ti–6Al–4V substrates with pre-placed B4C+ NiCrBSi powders. Surf. Coat. Technol. 2006, 200, 4923–4928. [Google Scholar] [CrossRef]
- Sun, R.; Lei, Y.; Niu, W. Laser clad TiC reinforced NiCrBSi composite coatings on Ti–6Al–4V alloy using a CW CO2 laser. Surf. Coat. Technol. 2009, 203, 1395–1399. [Google Scholar] [CrossRef]
- Zhuang, H.; Zhang, Q.; Zhang, D. Microstructure and Tribological Properties of Ni-Based Laser-Clad Coatings by Rare Earth Modification. J. Therm. Spray Technol. 2021, 30, 1410–1431. [Google Scholar] [CrossRef]
- Cheng, H.; Fang, Y.; Xu, J.; Zhu, C.; Dai, P.; Xue, S. Tribological properties of nano/ultrafine-grained FeCoCrNiMnAlx high-entropy alloys over a wide range of temperatures. J. Alloys Compd. 2020, 817, 153305. [Google Scholar] [CrossRef]
- Malatji, N.; Lengopeng, T.; Pityana, S.; Popoola, A. Microstructural, mechanical and electrochemical properties of AlCrFeCuNiWx high entropy alloys. J. Mater. Res. Technol. 2021, 11, 1594–1603. [Google Scholar] [CrossRef]
- Wen, X.; Cui, X.; Jin, G.; Liu, Y.; Zhang, Y.; Fang, Y. In-situ synthesis of nano-lamellar Ni1.5CrCoFe0.5Mo0.1Nbx eutectic high-entropy alloy coatings by laser cladding: Alloy design and microstructure evolution. Surf. Coat. Technol. 2021, 405, 126728. [Google Scholar] [CrossRef]
- Song, H.; Yang, J.; Jo, Y.; Song, T.; Kim, H.; Lee, B.-J.; Lee, S. Excellent combination of cryogenic-temperature strength and ductility of high-entropy-alloy-cored multi-layered sheet. J. Alloys Compd. 2019, 797, 465–470. [Google Scholar] [CrossRef]
- Wang, X.; Guo, W.; Fu, Y. High-entropy alloys: Emerging materials for advanced functional applications. J. Mater. Chem. A 2021, 9, 663–701. [Google Scholar] [CrossRef]
- CHEN, J.-m.; Chun, G.; ZHOU, J.-s. Microstructure and tribological properties of laser cladding Fe-based coating on pure Ti substrate. T Nonferr. Metal. Soc. 2012, 22, 2171–2178. [Google Scholar] [CrossRef]
- Xiang, K.; Chen, L.-Y.; Chai, L.; Guo, N.; Wang, H. Microstructural characteristics and properties of CoCrFeNiNbx high-entropy alloy coatings on pure titanium substrate by pulsed laser cladding. Appl. Surf. Sci. 2020, 517, 146214. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; Hao, X.; Zhang, X.; Liu, H. Lightweight refractory high entropy alloy coating by laser cladding on Ti–6Al–4V surface. Vacuum 2021, 183, 109823. [Google Scholar] [CrossRef]
- Li, Y.; Liang, H.; Nie, Q.; Qi, Z.; Deng, D.; Jiang, H.; Cao, Z. Microstructures and wear resistance of CoCrFeNi2V0.5Tix high-entropy alloy coatings prepared by laser cladding. Crystals 2020, 10, 352. [Google Scholar] [CrossRef]
- Zhang, H.; Dai, J.; Sun, C.; Li, S. Microstructure and wear resistance of TiAlNiSiV high-entropy laser cladding coating on Ti-6Al-4V. J. Mater. Process Technol. 2020, 282, 116671. [Google Scholar] [CrossRef]
- Cai, Z.; Jin, G.; Cui, X.; Liu, Z.; Zheng, W.; Li, Y.; Wang, L. Synthesis and microstructure characterization of Ni-Cr-Co-Ti-V-Al high entropy alloy coating on Ti-6Al-4V substrate by laser surface alloying. Mater. Charact. 2016, 120, 229–233. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Vilar, R.; Shen, J. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate. Mater. Des. 2012, 41, 338–343. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, Y.; Shen, J.; Vilar, R. Thermal stability and oxidation resistance of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V alloy. Surf. Coat. Technol. 2011, 206, 1389–1395. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Manladan, S.M.; Luo, Z.; Gao, F.; Li, L. Influence of dilution rate on the microstructure and properties of FeCrCoNi high-entropy alloy coating. Mater. Des. 2018, 142, 124–137. [Google Scholar] [CrossRef]
- Huang, C.; Tang, Y.-Z.; Zhang, Y.-Z.; Dong, A.-P.; Tu, J.; Chai, L.-J.; Zhou, Z.-M. Microstructure and dry sliding wear behavior of laser clad AlCrNiSiTi multi-principal element alloy coatings. Rare Metals. 2017, 36, 562–568. [Google Scholar] [CrossRef]
- Cai, Z.; Cui, X.; Liu, Z.; Li, Y.; Dong, M.; Jin, G. Microstructure and wear resistance of laser cladded Ni-Cr-Co-Ti-V high-entropy alloy coating after laser remelting processing. Opt. Laser Technol. 2018, 99, 276–281. [Google Scholar] [CrossRef]
- Liu, S.; Zhao, G.; Wang, X.; Zhou, C. Design and characterization of AlNbMoTaCux high entropy alloys laser cladding coatings. Surf. Coat. Technol. 2022, 447, 128832. [Google Scholar] [CrossRef]
- Ren, Z.; Hu, Y.; Tong, Y.; Cai, Z.; Liu, J.; Wang, H.; Liao, J.; Xu, S.; Li, L. Wear-resistant NbMoTaWTi high entropy alloy coating prepared by laser cladding on TC4 titanium alloy. Tribol. Int. 2023, 182, 108366. [Google Scholar] [CrossRef]
- Han, L.; Lingling, M.; Chaoqun, W.; Sun, L.; Zhang, W. Microstructure and properties of laser cladding AlBxCoCrNiTi high-entropy alloy coating on titanium alloys. Surf. Technol. 2017, 46, 226–231. [Google Scholar]
- Liang, G.; Jin, G.; Cui, X.; Qiu, Z.; Wang, J. Designing AlCoCrFeNiTi high-entropy alloy with the directional array TiN by magnetic field-assisted laser cladding. Appl. Phys. A 2021, 127, 350. [Google Scholar] [CrossRef]
- Prabu, G.; Duraiselvam, M.; Jeyaprakash, N.; Yang, C.-H. Microstructural evolution and wear behavior of AlCoCrCuFeNi high entropy alloy on Ti–6Al–4V through laser surface alloying. Met. Mater. Int. 2021, 27, 2328–2340. [Google Scholar] [CrossRef]
- Sheng, L.; Xiao, Y.; Jiao, C.; Du, B.; Li, Y.; Wu, Z.; Shao, L. Influence of layer number on microstructure, mechanical properties and wear behavior of the TiN/Ti multilayer coatings fabricated by high-power magnetron sputtering deposition. J. Manuf. Process 2021, 70, 529–542. [Google Scholar] [CrossRef]
- Li, Y.; Zhao, G.; Qi, H.; Li, M.; Zheng, Y.; Qian, Y.; Sheng, L. Preparation of single-phase Ti2AlN coating by magnetron sputtering with cost-efficient hot-pressed Ti-Al-N targets. Ceram. Int. 2018, 44, 17530–17534. [Google Scholar] [CrossRef]
- Jiang, F.; Cheng, L.; Zhang, J.; Wang, Y. Fabrication of barium-strontium aluminosilicate coatings on C/SiC composites via laser cladding. J. Mater. Sci. Technol. 2017, 33, 166–171. [Google Scholar] [CrossRef]
- Feng, Z.; Tang, M.; Liu, Y.; Yan, Z.; Li, G.; Zhang, R. In situ synthesis of TiC-TiN-reinforced Fe-base plasma cladding coatings. Surf. Eng. 2018, 34, 309–315. [Google Scholar] [CrossRef]
- Chen, T.; Deng, Z.; Liu, D.; Zhu, X.; Xiong, Y. Bioinert TiC ceramic coating prepared by laser cladding: Microstructures, wear resistance, and cytocompatibility of the coating. Surf. Coat. Technol. 2021, 423, 127635. [Google Scholar] [CrossRef]
- Chen, T.; Li, W.; Liu, D.; Xiong, Y.; Zhu, X. Effects of heat treatment on microstructure and mechanical properties of TiC/TiB composite bioinert ceramic coatings in-situ synthesized by laser cladding on Ti6Al4V. Ceram. Int. 2021, 47, 755–768. [Google Scholar] [CrossRef]
- Tian, Y.; Chen, C. Microstructures and wear properties of in situ formed composite coatings produced by laser alloying technique. Mater. Lett. 2007, 61, 635–638. [Google Scholar] [CrossRef]
- Biswas, A.; Li, L.; Chatterjee, U.; Manna, I.; Pabi, S.; Majumdar, J.D. Mechanical and electrochemical properties of laser surface nitrided Ti–6Al–4V. Scr. Mater. 2008, 59, 239–242. [Google Scholar] [CrossRef]
- Weng, F.; Chen, C.; Yu, H. Research status of laser cladding on titanium and its alloys: A review. Mater. Des. 2014, 58, 412–425. [Google Scholar] [CrossRef]
- Yang, C.; Cheng, X.; Tang, H.; Tian, X.; Liu, D. Influence of microstructures and wear behaviors of the microalloyed coatings on TC11 alloy surface using laser cladding technique. Surf. Coat. Technol. 2018, 337, 97–103. [Google Scholar] [CrossRef]
- Huang, B.; Gao, Y.; Chen, P.; Xiong, W.; Tang, J. Microstructure and properties of Ni+ B4C/Ti coatings by high-frequency induction cladding. Surf. Innov. 2018, 7, 59–67. [Google Scholar] [CrossRef]
- Wang, W.-F.; Jin, L.-S.; Yang, J.-G.; Sun, F.-J. Directional growth whisker reinforced Ti-base composites fabricated by laser cladding. Surf. Coat. Technol. 2013, 236, 45–51. [Google Scholar] [CrossRef]
- Liang, J.; Yin, X.; Lin, Z.; Chen, S.; Liu, C.; Yan, S.; Dong, S. Effects of LaB6 on microstructure evolution and properties of in-situ synthetic TiC+ TiBx reinforced titanium matrix composite coatings prepared by laser cladding. Surf. Coat. Technol. 2020, 403, 126409. [Google Scholar] [CrossRef]
- Zhang, H.; Yu, H.; Chen, C. Microstructure and wear resistance of composite coating by laser cladding Ni60A/B4C pre-placed powders on Ti-6Al-4V substrate. Sci. Eng. Compos. Mater. 2017, 24, 541–546. [Google Scholar] [CrossRef]
- Wanliang, W.; Yong, L.; Dezhuang, Y.; Wenrong, H. Microstructure of TiC dendrites reinforced titanium matrix composite layer by laser cladding. J. Mater. Sci. Lett. 2003, 22, 1169–1171. [Google Scholar] [CrossRef]
- Sun, R.; Mao, J.; Yang, D. Microscopic morphology and distribution of TiC phase in laser clad NiCrBSiC–TiC layer on titanium alloy substrate. Surf. Coat. Technol. 2002, 155, 203–207. [Google Scholar] [CrossRef]
- Dong, Y.; Wang, H. Microstructure and dry sliding wear resistance of laser clad TiC reinforced Ti–Ni–Si intermetallic composite coating. Surf. Coat. Technol. 2009, 204, 731–735. [Google Scholar] [CrossRef]
- Liu, R.; Dang, X.; Gao, Y.; Wu, T.; Zhu, Y. The Wear Behavior of the Laser Cladded Ti-Al-Si Composite Coatings on Ti-6Al-4V Alloy with Additional TiC. Materials 2021, 14, 4567. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Dai, X. Laser induction hybrid rapid cladding of WC particles reinforced NiCrBSi composite coatings. Appl. Surf. Sci. 2010, 256, 4708–4714. [Google Scholar] [CrossRef]
- Diao, Y.; Zhang, K. Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. Appl. Surf. Sci. 2015, 352, 163–168. [Google Scholar] [CrossRef]
- Lin, Y.; Yao, J.; Lei, Y.; Fu, H.; Wang, L. Microstructure and properties of TiB2–TiB reinforced titanium matrix composite coating by laser cladding. Opt. Lasers Eng. 2016, 86, 216–227. [Google Scholar] [CrossRef]
- Riquelme, A.; Escalera-Rodríguez, M.D.; Rodrigo, P.; Otero, E.; Rams, J. Effect of alloy elements added on microstructure and hardening of Al/SiC laser clad coatings. J. Alloys Compd. 2017, 727, 671–682. [Google Scholar] [CrossRef]
- Lin, Y.; Yao, J.; Wang, L.; Zhang, Q.; Li, X.; Lei, Y.; Fu, H. Effects of TiB2 particle and short fiber sizes on the microstructure and properties of TiB2-reinforced composite coatings. J. Mater. Eng. Perform. 2018, 27, 1876–1889. [Google Scholar] [CrossRef]
- Li, J.; Chen, C.; Lin, Z.; Squartini, T. Phase constituents and microstructure of laser cladding Al2O3/Ti3Al reinforced ceramic layer on titanium alloy. J. Alloys Compd. 2011, 509, 4882–4886. [Google Scholar] [CrossRef]
- Lin, Y.; Chen, Z.; Li, Y.; Zhu, W.; Wen, X.; Wang, X. Microstructure and hardness properties of TiB ceramic coatings prepared in situ by laser cladding on TC4 titanium alloy. Infrared Laser Eng. 2012, 41, 2694–2698. [Google Scholar]
- Zhang, H.; Yu, H.; Chen, C. Microstructure and Wear Resistance of Composite Coating by Laser Cladding Al/TiN on the Ti–6 Al–4 V Substrate. Surf. Rev. Lett. 2015, 22, 1550044. [Google Scholar] [CrossRef]
- Sui, X.; Lu, J.; Hu, J.; Zhang, W. Effect of specific energy on microstructure and properties of laser cladded TiN/Ti3AlN-Ti3Al composite coating. Opt. Laser Technol. 2020, 131, 106428. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, D.; Yan, W.; Zheng, Y. Microstructure and wear properties of TiCN/Ti coatings on titanium alloy by laser cladding. Opt. Lasers Eng. 2010, 48, 119–124. [Google Scholar] [CrossRef]
- Das, M.; Bhattacharya, K.; Dittrick, S.A.; Mandal, C.; Balla, V.K.; Kumar, T.S.; Bandyopadhyay, A.; Manna, I. In situ synthesized TiB–TiN reinforced Ti6Al4V alloy composite coatings: Microstructure, tribological and in-vitro biocompatibility. J. Mech. Behav. Biomed. 2014, 29, 259–271. [Google Scholar] [CrossRef]
- Li, M.; Huang, J.; Zhu, Y.; Li, Z. Effect of heat input on the microstructure of in-situ synthesized TiN–TiB/Ti based composite coating by laser cladding. Surf. Coat. Technol. 2012, 206, 4021–4026. [Google Scholar] [CrossRef]
- Zhou, S.; Lei, J.; Dai, X.; Guo, J.; Gu, Z.; Pan, H. A comparative study of the structure and wear resistance of NiCrBSi/50 wt.% WC composite coatings by laser cladding and laser induction hybrid cladding. Int. J. Refract Met. H 2016, 60, 17–27. [Google Scholar] [CrossRef]
- Li, W.; Xu, P.; Wang, Y.; Zou, Y.; Gong, H.; Lu, F. Laser synthesis and microstructure of micro-and nano-structured WC reinforced Co-based cladding layers on titanium alloy. J. Alloys Compd. 2018, 749, 10–22. [Google Scholar] [CrossRef]
- Qi, C.; Zhan, X.; Gao, Q.; Liu, L.; Song, Y.; Li, Y. The influence of the pre-placed powder layers on the morphology, microscopic characteristics and microhardness of Ti-6Al-4V/WC MMC coatings during laser cladding. Opt. Laser Technol. 2019, 119, 105572. [Google Scholar] [CrossRef]
- Xiao, Y.; Qiao, Y.; Li, Y.; Sheng, L.; Lai, C.; Xi, T. Research progress on surface modification technology of medical titanium and titanium alloys. Mater. Rep. 2019, 33, 336–342. [Google Scholar]
- Wen, C.; Qian, J.; Luo, L.; Zeng, J.; Sa, B.; Zhan, X.; Wang, J.; Sheng, L.; Zheng, Y. Effect of nitrogen on the structure evolution and biological properties of mesoporous bioactive glass nanospheres: Experiments and simulations. J. Non. Cryst. Solids. 2022, 578, 121329. [Google Scholar] [CrossRef]
- Tan, Y.; Ma, L.; Chen, X.; Ran, Y.; Tong, Q.; Tang, L.; Li, X. Injectable hyaluronic acid/hydroxyapatite composite hydrogels as cell carriers for bone repair. Int. J. Biol. Macromol. 2022, 216, 547–557. [Google Scholar] [CrossRef]
- Montazerian, M.; Hosseinzadeh, F.; Migneco, C.; Fook, M.V.; Baino, F. Bioceramic coatings on metallic implants: An overview. Ceram. Int. 2022, 48, 8987–9005. [Google Scholar] [CrossRef]
- Liu, B.; Deng, Z.; Liu, D. Preparation and Properties of Multilayer Ca/P Bio-Ceramic Coating by Laser Cladding. Coatings 2021, 11, 891. [Google Scholar] [CrossRef]
- Li, H.; Wang, D.; Hu, C.; Dou, J.; Yu, H.; Chen, C.; Gu, G. Microstructure, mechanical and biological properties of laser cladding derived CaO-SiO2-MgO system ceramic coatings on titanium alloys. Appl. Surf. Sci. 2021, 548, 149296. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, Q.; Xu, P.; Li, L.; Jiang, H.; Bai, Y. Bioactivity of calcium phosphate bioceramic coating fabricated by laser cladding. Laser Phys. Lett. 2016, 13, 055601. [Google Scholar] [CrossRef]
- Kuo, P.H.; Joshi, S.S.; Lu, X.; Ho, Y.H.; Xiang, Y.; Dahotre, N.B.; Du, J. Laser coating of bioactive glasses on bioimplant titanium alloys. Int. J. Appl. Glass. Sci. 2019, 10, 307–320. [Google Scholar] [CrossRef]
- Kamboj, N.; Kazantseva, J.; Rahmani, R.; Rodríguez, M.A.; Hussainova, I. Selective laser sintered bio-inspired silicon-wollastonite scaffolds for bone tissue engineering. Mater. Sci. Eng. C 2020, 116, 111223. [Google Scholar] [CrossRef]
- Zhang, H.; Yong, Z.; Zengda, Z.; Chuanwei, S. Effects of CeO2 on microstructure and corrosion resistance of TiC-VC reinforced Fe-based laser cladding layers. J. Rare Earth 2014, 32, 1095–1100. [Google Scholar] [CrossRef]
- Sheng, L.; Guo, J.; Tian, Y.; Zhou, L.; Ye, H. Microstructure and mechanical properties of rapidly solidified NiAl–Cr (Mo) eutectic alloy doped with trace Dy. J. Alloys Compd. 2009, 475, 730–734. [Google Scholar] [CrossRef]
- Sheng, L.; Du, B.; Hu, Z.; Qiao, Y.; Xiao, Z.; Wang, B.; Xu, D.; Zheng, Y.; Xi, T. Effects of annealing treatment on microstructure and tensile behavior of the Mg-Zn-Y-Nd alloy. J. Magnes. Alloy. 2020, 8, 601–613. [Google Scholar] [CrossRef]
- Sheng, L.; Wang, L.; Xi, T.; Zheng, Y.; Ye, H. Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr (Mo, Hf) eutectic alloys. Mater. Des. 2011, 32, 4810–4817. [Google Scholar] [CrossRef]
- Zhang, K.-M.; Zou, J.-X.; Jun, L.; Yu, Z.-S.; Wang, H.-P. Synthesis of Y2O3 particle enhanced Ni/TiC composite on TC4 Ti alloy by laser cladding. T Nonferr. Metal. Soc. 2012, 22, 1817–1823. [Google Scholar] [CrossRef]
- Zhang, T.; Zhuang, H.; Zhang, Q.; Yao, B.; Yang, F. Influence of Y2O3 on the microstructure and tribological properties of Ti-based wear-resistant laser-clad layers on TC4 alloy. Ceram. Int. 2020, 46, 13711–13723. [Google Scholar] [CrossRef]
- Yuling, G.; Meiping, W.; Xiaojin, M.; Chen, C. Effect of CeO2 on crack sensitivity and tribological properties of Ni60A coatings prepared by laser cladding. Adv. Mech. Eng. 2021, 13, 16878140211013125. [Google Scholar] [CrossRef]
- Liu, X.-B.; Yu, R.-L. Effects of La2O3 on microstructure and wear properties of laser clad γ/Cr7C3/TiC composite coatings on TiAl intermatallic alloy. Mater. Chem. Phys. 2007, 101, 448–454. [Google Scholar] [CrossRef]
- Ye, F.; Shao, W.; Ye, X.; Liu, M.; Xie, Y.; Bian, P.; Wang, X.; Liu, L.; Wu, H. Microstructure and corrosion behavior of laser-cladding CeO2-doped Ni-based composite coatings on TC4. J. chem. 2020, 2020, 8690428. [Google Scholar] [CrossRef]
- Cui, C.; Wu, M.; Miao, X.; Zhao, Z.; Gong, Y. Microstructure and corrosion behavior of CeO2/FeCoNiCrMo high-entropy alloy coating prepared by laser cladding. J. Alloys Compd. 2022, 890, 161826. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, F.; Zhang, H.; Zhang, T.; Wang, H. Microstructure and element distribution of laser cladding TiCx-reinforced CrTi4-based composite coating with CeO2/Ce2O3. Mater. Lett. 2021, 283, 128772. [Google Scholar] [CrossRef]
- Chen, T.; Liu, D.; Wu, F.; Wang, H. Effect of CeO2 on microstructure and wear resistance of TiC bioinert coatings on Ti6Al4V alloy by laser cladding. Materials 2017, 11, 58. [Google Scholar] [CrossRef]
- Weng, F.; Yu, H.; Chen, C.; Liu, J.; Zhao, L.; Dai, J. Fabrication of Co-based coatings on titanium alloy by laser cladding with CeO2 addition. Mater. Manuf. Process 2016, 31, 1461–1467. [Google Scholar] [CrossRef]
- Wang, H.; Chen, T.; Cong, W.; Liu, D. Laser cladding of Ti-based ceramic coatings on Ti6Al4V alloy: Effects of CeO2 nanoparticles additive on wear performance. Coatings 2019, 9, 109. [Google Scholar] [CrossRef]
- Yanan, L.; Ronglu, S.; Wei, N.; Tiangang, Z.; Yiwen, L. Effects of CeO2 on microstructure and properties of TiC/Ti2Ni reinforced Ti-based laser cladding composite coatings. Opt. Lasers Eng. 2019, 120, 84–94. [Google Scholar] [CrossRef]
- Chen, T.; Wu, F.; Wang, H.; Liu, D. Laser cladding in-situ Ti (C, N) particles reinforced Ni-based composite coatings modified with CeO2 nanoparticles. Metals 2018, 8, 601. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, K.; Yao, C.; Li, Z. Effect of LaB6 addition on the microstructure and properties of (Ti3Al+ TiB)/Ti composites by laser cladding. Mater. Des. 2019, 181, 107959. [Google Scholar] [CrossRef]
- Yin, X.; Liang, J.; Gao, Y.; Lin, Z.; Chen, S.; Liu, C.; Tian, K.; Zhang, H.; Tang, G. Effects of LaB6 on the high-temperature oxidation behavior of TiC+ TiBx reinforced titanium matrix composite coatings fabricated by laser cladding. Surf. Coat. Technol. 2021, 421, 127445. [Google Scholar] [CrossRef]
- Wang, K.; Du, D.; Liu, G.; Chang, B.; Hong, Y. Microstructure and properties of WC reinforced Ni-based composite coatings with Y2O3 addition on titanium alloy by laser cladding. Sci. Technol. Weld. Join. 2019, 24, 517–524. [Google Scholar] [CrossRef]
- Zhang, Z.; Yang, Q.; Yu, Z.; Wang, H.; Zhang, T. Influence of Y2O3 addition on the microstructure of TiC reinforced Ti-based composite coating prepared by laser cladding. Mater. Charact. 2022, 189, 111962. [Google Scholar] [CrossRef]
- Wang, L.; Yang, L.; Huang, Y.; Yuan, Y.; Jia, C. Effects of Y2O3 addition on the microstructure and wear-resistant performance of TiN/TiB-reinforced Ti-based laser-clad coatings on Ti-6Al-4V alloys. Mater. Today Commun. 2021, 29, 102752. [Google Scholar] [CrossRef]
- Li, J.; Luo, X.; Li, G. Effect of Y2O3 on the sliding wear resistance of TiB/TiC-reinforced composite coatings fabricated by laser cladding. Wear 2014, 310, 72–82. [Google Scholar] [CrossRef]
- Sheng, L.; Yang, F.; Guo, J.; Xi, T.; Ye, H. Investigation on NiAl–TiC–Al2O3 composite prepared by self-propagation high temperature synthesis with hot extrusion. Compos. B. Eng. 2013, 45, 785–791. [Google Scholar] [CrossRef]
- Guo, J.; Sheng, L.; Tian, Y.; Zhou, L.; Ye, H. Effect of Ho on the microstructure and compressive properties of NiAl-based eutectic alloy. Mater. Lett. 2008, 62, 3910–3912. [Google Scholar] [CrossRef]
- Lu, S.; Zhou, J.; Wang, L.; Liang, J.; Cao, S.; Li, K. Research progress of laser cladding ceramic coating on titanium alloy surface. Surf. Technol. 2019, 48, 82–90. [Google Scholar]
- Sheng, L.; Yang, Y.; Lai, C.; Chen, X.; Xi, T. Microstructure evolution of a Ti–Al–Sn–Zr based alloy during the hot compression deformation. Mater. Express 2019, 9, 1127–1133. [Google Scholar] [CrossRef]
- Sheng, L.Y.; Guo, J.T.; Xi, T.F.; Zhang, B.; Ye, H.Q. ZrO2 strengthened NiAl/Cr (Mo, Hf) composite fabricated by powder metallurgy. Prog. Nat. Sci. Mater. 2012, 22, 231–236. [Google Scholar] [CrossRef]
- Guo, B.; Zhou, J.; Zhang, S.; Zhou, H.; Pu, Y.; Chen, J. Phase composition and tribological properties of Ti–Al coatings produced on pure Ti by laser cladding. Appl. Surf. Sci. 2007, 253, 9301–9310. [Google Scholar] [CrossRef]
- Sheng, L.; Yang, F.; Xi, T.; Guo, J.; Ye, H. Microstructure evolution and mechanical properties of Ni3Al/Al2O3 composite during self-propagation high-temperature synthesis and hot extrusion. Mater. Sci. Eng. A 2012, 555, 131–138. [Google Scholar] [CrossRef]
- Sheng, L.; Yang, F.; Xi, T.; Zheng, Y.; Guo, J. Improvement of compressive strength and ductility in NiAl–Cr (Nb)/Dy alloy by rapid solidification and HIP treatment. Intermetallics 2012, 27, 14–20. [Google Scholar] [CrossRef]
- Zhang, W.; Du, K.; Chen, X.; Sheng, L.; Ye, H. Thermally stable coherent domain boundaries in complex-structured Cr2Nb intermetallics. Philos. Mag. 2016, 96, 58–70. [Google Scholar] [CrossRef]
- Gao, Q.; Yan, H.; Qin, Y.; Zhang, P.; Guo, J.; Chen, Z.; Yu, Z. Laser cladding Ti-Ni/TiN/TiW + TiS/WS2 self-lubricating wear resistant composite coating on Ti-6Al-4V alloy. Opt. Laser Technol. 2019, 113, 182–191. [Google Scholar] [CrossRef]
- Wang, W.; Sun, F.; Wang, M. Laser Cladding Ni-Based Tribaloy 700 Coatings on TA2 Titanium Alloy. Chin. J. Lasers 2007, 34, 1710. [Google Scholar]
- Lu, X.-L.; Liu, X.-B.; Yu, P.-C.; Qiao, S.-J.; Zhai, Y.-J.; Wang, M.-D.; Chen, Y.; Xu, D. Synthesis and characterization of Ni60-hBN high temperature self-lubricating anti-wear composite coatings on Ti6Al4V alloy by laser cladding. Opt. Laser. Technol. 2016, 78, 87–94. [Google Scholar] [CrossRef]
- Li, B.; Zhang, L.; Li, Y.; Li, H.; Zhou, L.; Liang, C.; Wang, H. Corrosion Resistance and Biological Properties of Anatase and Rutile Coatings on a Titanium Surface. Chem. Lett. 2019, 48, 1355–1357. [Google Scholar] [CrossRef]
- Hua, F.; Mon, K.; Pasupathi, P.; Gordon, G.; Shoesmith, D. A review of corrosion of titanium grade 7 and other titanium alloys in nuclear waste repository environments. Corrosion 2005, 61, 987–1003. [Google Scholar] [CrossRef]
- Guo, C.; Zhou, J.; Zhao, J.; Wang, L.; Yu, Y.; Chen, J.; Zhou, H. Microstructure and tribological properties of a HfB2-containing Ni-based composite coating produced on a pure Ti substrate by laser cladding. Tribol. Lett. 2011, 44, 187–200. [Google Scholar] [CrossRef]
- Malatji, N.; Popoola, A.; Pityana, S.; Lengopeng, T. Fabrication of Ti10Fe5Si5Cr3Nb composite coatings on Ti-6Al-4V alloy using laser cladding technique. Mater. Res. 2021, 24, e20210080. [Google Scholar] [CrossRef]
- Zhao, H.; Li, J.; Gao, W.; Huang, D.; Chen, G.; Zhang, M. Microstructure, Corrosion Resistance, and Wear Resistance of In Situ Synthesized NiTi-Based Coating by Laser Induction Hybrid Rapid Cladding. J. Mater. Eng. Perform. 2022. [Google Scholar] [CrossRef]
- Hu, L.-F.; Li, J.; Lv, Y.-H.; Tao, Y.-F. Corrosion behavior of laser-clad coatings fabricated on Ti6Al4V with different contents of TaC addition. Rare Metals 2020, 39, 436–447. [Google Scholar] [CrossRef]
- Li, W.; Li, J.; Xu, Y. Investigation into the Corrosion Wear Resistance of CoCrFeNiAlx Laser-Clad Coatings Mixed with the Substrate. Metals 2022, 12, 460. [Google Scholar] [CrossRef]
- Dai, J.; Zhang, H.; Sun, C.; Li, S.; Chen, C.; Yang, Y. The effect of Nb and Si on the hot corrosion behaviors of TiAl coatings on a Ti-6Al-4V alloy. Corros. Sci. 2020, 168, 108578. [Google Scholar] [CrossRef]
- Casadebaigt, A.; Hugues, J.; Monceau, D. High temperature oxidation and embrittlement at 500–600 C of Ti-6Al-4V alloy fabricated by Laser and Electron Beam Melting. Corros. Sci. 2020, 175, 108875. [Google Scholar] [CrossRef]
- Zhou, H.; Li, F.; He, B.; Wang, J. Air plasma sprayed thermal barrier coatings on titanium alloy substrates. Surf. Coat. Technol. 2007, 201, 7360–7367. [Google Scholar] [CrossRef]
- Chen, R.; Gong, X.; Wang, Y.; Qin, G.; Zhang, N.; Su, Y.; Ding, H.; Guo, J.; Fu, H. Microstructure and oxidation behaviour of plasma-sprayed NiCoCrAlY coatings with and without Ta on Ti44Al6Nb1Cr alloys. Corros. Sci. 2018, 136, 244–254. [Google Scholar] [CrossRef]
- Daroonparvar, M.; Yajid, M.A.M.; Kay, C.M.; Bakhsheshi-Rad, H.; Gupta, R.K.; Yusof, N.M.; Ghandvar, H.; Arshad, A.; Zulkifli, I.S.M. Effects of Al2O3 diffusion barrier layer (including Y-containing small oxide precipitates) and nanostructured YSZ top coat on the oxidation behavior of HVOF NiCoCrAlTaY/APS YSZ coatings at 1100 °C. Corros. Sci. 2018, 144, 13–34. [Google Scholar] [CrossRef]
- Li-Yan, L.; Yu, Z.; Yun-Jie, J.; Yan, L.; Hong-Fang, T.; Yu-Jun, C.; Cheng-Xin, L. High speed laser cladded Ti-Cu-NiCoCrAlTaY burn resistant coating and its oxidation behavior. Surf. Coat. Technol. 2020, 392, 125697. [Google Scholar] [CrossRef]
- Feng, Y.; Feng, K.; Yao, C.; Li, Z.; Sun, J. High temperature oxidation and wear resistance of in situ synthesized (Ti3Al+ TiB)/Ti composites by laser cladding. Metall. Mater. Trans. A 2019, 50, 3414–3428. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, X.; Jiang, Y.; Zhou, R. Microstructure and high temperature oxidation resistance of in-situ synthesized TiN/Ti3Al intermetallic composite coatings on Ti6Al4V alloy by laser cladding process. J. Alloys Compd. 2016, 670, 268–274. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, T.; Chen, L.; Chen, Y.; Guan, C.; Sun, J. Microstructure and wear resistance behavior of Ti–C–B4C-reinforced composite coating. Ceram. Int. 2020, 46, 25136–25148. [Google Scholar] [CrossRef]
- Nan, X.; Zhao, M.; Lu, Y.; Sekido, N.; Yoshimi, K. High-temperature oxidation behavior of a Ti5Si3-incorporated MoSiBTiC alloy. Intermetallics 2020, 125, 106895. [Google Scholar] [CrossRef]
- Chien, C.; Liu, C.; Kuo, T.; Wu, C.; Hong, T. Bioactivity of fluorapatite/alumina composite coatings deposited on Ti6Al4V substrates by laser cladding. Appl. Phys. A 2016, 122, 303. [Google Scholar] [CrossRef]
- Sui, Q.; Meng, L.; Wang, S.; Li, P.; Yin, X.; Wang, L. Effect of Nb addition on mechanical properties and corrosion behavior of Ti6Al4V alloy produced by selective laser melting. J. Mater. Res. 2020, 35, 571–579. [Google Scholar] [CrossRef]
- Dos Santos, M.L.; dos Santos Riccardi, C.; de Almeida Filho, E.; Guastaldi, A.C. Biomimetic calcium phosphates-based coatings deposited on binary Ti-Mo alloys modified by laser beam irradiation for biomaterial/clinical applications. MRS Adv. 2018, 3, 1711–1718. [Google Scholar] [CrossRef]
- Chien, C.-S.; Ko, Y.-S.; Kuo, T.-Y.; Liao, T.-Y.; Lin, H.-C.; Lee, T.-M.; Hong, T.-F. Surface properties and in vitro bioactivity of fluorapatite/TiO2 coatings deposited on Ti substrates by Nd: YAG laser cladding. J. Med. Biol. Eng. 2015, 35, 357–366. [Google Scholar] [CrossRef]
- Paital, S.R.; Bunce, N.; Nandwana, P.; Honrao, C.; Nag, S.; He, W.; Banerjee, R.; Dahotre, N.B. Laser surface modification for synthesis of textured bioactive and biocompatible Ca–P coatings on Ti–6Al–4V. J. Mater. Sci. Mater. Med. 2011, 22, 1393–1406. [Google Scholar] [CrossRef] [PubMed]
- Hou, B.; Yang, Z.; Yang, Y.; Zhang, E.; Qin, G. In vitro bioactivity, tribological property, and antibacterial ability of Ca–Si-based coatings doped with cu particles in-situ fabricated by laser cladding. Appl. Phys. A 2018, 124, 256. [Google Scholar] [CrossRef]
- Jiang, J.; Han, G.; Zheng, X.; Chen, G.; Zhu, P. Characterization and biocompatibility study of hydroxyapatite coating on the surface of titanium alloy. Surf. Coat. Technol. 2019, 375, 645–651. [Google Scholar] [CrossRef]
- Chakraborty, R.; Raza, M.S.; Datta, S.; Saha, P. Synthesis and characterization of nickel free titanium–hydroxyapatite composite coating over Nitinol surface through in-situ laser cladding and alloying. Surf. Coat. Technol. 2019, 358, 539–550. [Google Scholar] [CrossRef]
- Jia, Z.; Li, M.; Xiu, P.; Xu, X.; Cheng, Y.; Zheng, Y.; Xi, T.; Wei, S.; Liu, Z. A novel cytocompatible, hierarchical porous Ti6Al4V scaffold with immobilized silver nanoparticles. Mater. Lett. 2015, 157, 143–146. [Google Scholar] [CrossRef]
- Wu, H.; Liang, L.; Lan, X.; Yin, Y.; Song, M.; Li, R.; Liu, Y.; Yang, H.; Liu, L.; Cai, A. Tribological and biological behaviors of laser cladded Ti-based metallic glass composite coatings. Appl. Surf. Sci. 2020, 507, 145104. [Google Scholar] [CrossRef]
- Fathi, R.; Wei, H.; Saleh, B.; Radhika, N.; Jiang, J.; Ma, A.; Ahmed, M.H.; Li, Q.; Ostrikov, K.K. Past and present of functionally graded coatings: Advancements and future challenges. Appl. Mater. Today 2022, 26, 101373. [Google Scholar] [CrossRef]
- Yang, M.; Pan, Y.; Yuan, F.; Zhu, Y.; Wu, X. Back stress strengthening and strain hardening in gradient structure. Mater. Res. Lett. 2016, 4, 145–151. [Google Scholar] [CrossRef]
- Cui, Y.; Shen, J.; Geng, K.; Hu, S. Fabrication of FeCoCrNiMnAl0. 5-FeCoCrNiMnAl gradient HEA coating by laser cladding technique. Surf. Coat. Technol. 2021, 412, 127077. [Google Scholar] [CrossRef]
- Lin, Y.; Lei, Y.; Li, X.; Zhi, X.; Fu, H. A study of TiB2/TiB gradient coating by laser cladding on titanium alloy. Opt. Lasers Eng. 2016, 82, 48–55. [Google Scholar] [CrossRef]
- Liang, J.; Yin, X.; Lin, Z.; Chen, S.; Liu, C.; Wang, C. Microstructure and wear behaviors of laser cladding in-situ synthetic (TiBx+ TiC)/(Ti2Ni+ TiNi) gradient composite coatings. Vacuum 2020, 176, 109305. [Google Scholar] [CrossRef]
- Quazi, M.; Fazal, M.; Haseeb, A.; Yusof, F.; Masjuki, H.; Arslan, A. A review to the laser cladding of self-lubricating composite coatings. Lasers Manuf. Mater. 2016, 3, 67–99. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, M.; Mandal, A.; Das, A. Ni–WS2–Ti–6Al–4V self-lubricating coating on TC4 alloy by laser cladding. Surf. Eng. 2022, 38, 313–323. [Google Scholar] [CrossRef]
- Liu, K.; Yan, H.; Zhang, P.; Zhao, J.; Yu, Z.; Lu, Q. Wear Behaviors of TiN/WS2+ hBN/NiCrBSi Self-Lubricating Composite Coatings on TC4 Alloy by Laser Cladding. Coatings 2020, 10, 747. [Google Scholar] [CrossRef]
- Selvan, J.S.; Subramanian, K. High-temperature thermal barrier coating formation by laser alloying of CP-Ti with pre-placed Ni-SiC coating. J. Mater. Sci. 2003, 38, 4783–4801. [Google Scholar] [CrossRef]
- Liu, L.; Shangguan, Y.; Tang, H.; Wang, H. Fretting wear behavior of laser-nitrided Ti–5Al–5Mo–5V–1Cr–1Fe alloy fabricated by laser melting deposition. Appl. Phys. A 2014, 116, 1993–2000. [Google Scholar] [CrossRef]
- Gushchina, M.O.; Kuzminova, Y.O.; Dubinin, O.N.; Evlashin, S.A.; Vildanov, A.M.; Klimova-Korsmik, O.G.; Turichin, G.A. Multilayer composite Ti-6Al-4 V/Cp-Ti alloy produced by laser direct energy deposition. Int. J. Adv. Manuf. Technol. 2022, 124, 907–918. [Google Scholar] [CrossRef]
Characteristic | BW | AC | PC | EBC | LC |
---|---|---|---|---|---|
Energy density | Low | Low | Moderate | Moderate | High |
Automaticity | Low | Moderate | High | High | High |
Heat-affected zone | High | High | Moderate | Moderate | Low |
Controllability | Low | Moderate | High | High | High |
Cost | Low | Moderate | Moderate | Moderate | High |
Cladding Materials | Substrates | Strengthening Phases | Properties | Ref. |
---|---|---|---|---|
Co42 + TiN | TC4 Alloy | TiN + TiC + Co3Ti + TiC0.3N0.7 + NiTi | H + WR | [107] |
Co42 + B4C + SiC + Y2O3 | TC4 Alloy | CoTi + CoTi2 + NiTi + TiC + TiB2 + TiB + Cr7C3 + Ti5Si3 | H + WR | [105] |
Co50 | TA15 | TiB2 + Cr5Si3 + TiC + SiC + Co3Ti + NiC + WB | H + WR | [108] |
Co42 + SiC | TC4 Alloy | CoTi + CoTi2 + NiTi + Cr7C3 + TiB + TiC + Ti5Si3 | H + WR | [109] |
NiCrBSi + WC | TA2 | Cr2Ni3 + Cr3Si + TiC + WC + W2C + B4CrTi | H + WR + OB | [8] |
NiCrBSi+ B4C | TC4 Alloy | γ-Ni + TiB2 + TiC + CrB | H | [110] |
NiCrBSi + TiC | TC4 Alloy | TiC + Cr23C6 + CrB + TiB2 | WR | [111] |
NiCrMoNb | α-Ti Alloy | Cr23C6 + Cr5B3 + NbC | H + WR | [100] |
NiCrBSiC | Cr23C6 + Cr5B3 + CrB | H + WR | ||
Ni45 + TC4 + NiCr-Cr3C2 | TC4 Alloy | TiC + TiB2 + Ti2Ni | H + WR | [112] |
Cladding Materials | Substrates | Strengthening Phases | Properties | Ref. |
---|---|---|---|---|
FeNiCrMoWSiBC | TA2 | Fe2Ti + Fe2B + Fe3Si + Ti2Ni | H + WR | [118] |
CoCrFeNiNb | Pure Ti | BCC + Cr2Ti+ Cr2Nb | H | [119] |
AlTiVNbMo | TC4 Alloy | BCC | H | [120] |
CoCrFeNiVTi | TC4 Alloy | BCC + (Co,Ni)Ti2 | H + WR | [121] |
TiAlNiSiV | TC4 Alloy | BCC + (Ti,V)5Si3 + TiN | H + WR | [122] |
NiCrCoTiVAl | TC4 Alloy | BCC + FCC | H | [123] |
TiVCrAlSi | TC4 Alloy | BCC + (Ti,V)5Si3 | H + WR | [124] |
TiVCrAlSi | TC4 Alloy | BCC + (Ti,V)5Si3 | H + WR + OB | [125] |
FeCoCrNi | TC4 Alloy | FCC + BCC + Cr7C3 | H + CP + OB | [126] |
AlCrNiSiTi | Ti64 Alloy | (Ti,Cr)5Si3 + NiAl | H+ WR | [127] |
NiCrCoTiV | TC4 Alloy | BCC + (Ni,Co)Ti2 | H + WR | [128] |
AlNbMoTaCu | TC4 Alloy | HCP + FCC + BCC | H + WR | [129] |
NbMoTaWTi | TC4 Alloy | BCC | H+WR | [130] |
AlBCoCrNiTi | TC4 Alloy | BCC + TiB2 + (Co,Ni)Ti2 | H + WR | [131] |
AlCoCrFeNiTi | TC4 Alloy | BCC + TiN + (Ni,Co)Ti2 | CP | [132] |
AlCoCrCuFeNi | TC4 Alloy | BCC | H + WR | [133] |
Composite Material Systems | Substrates | Reinforced Phase | Properties | Ref. | |
---|---|---|---|---|---|
Ceramics | Metals | ||||
B4C | NiCrBSi | TC4 alloy | TiC + TiB2 + CrB | H | [110] |
B4C | Ti + Ni | TA15 alloy | TiB + TiC + TiNi + Ti2Ni | H and WR | [144] |
B4C | Ti811 | Ti811 alloy | TiC + TiB | H | [145] |
B4C | TC4 | TC4 alloy | TiC + TiB2 + TiB | H and WR | [146] |
B4C | Ni60A | TC4 alloy | TiC + TiB2 + CrB + Ni3Ti | H and WR | [147] |
TiC + B4C | Ni204 | TC4 alloy | TiC + TiB2 | H and WR | [61] |
TiC | Ti | TC4 alloy | TiC | H | [148] |
TiC | NiCrBSi | TC4 alloy | TiC + TiB2 | H | [149] |
TiC | Ti-Ni-Si | TA15 alloy | TiC | H and WR | [150] |
TiC | NiCrBSi | TC4 alloy | Cr23C6 + TiC + TiB2 + CrB | WR | [111] |
TiC | Ti + Al + Si | TC4 alloy | TiC + TiAl3 | H and WR | [151] |
TiC | Al | TC4 alloy | Ti3Al + Al3Ti + TiAl + TiC | H | [152] |
TiC + TiB2 | Ti | TC2 alloy | TiC + TiB2 | H and CP | [153] |
TiB2 | TC4 | TC4 alloy | TiB2 + TiB | H and WR | [154] |
TiB2 | Ti | TC4 alloy | TiAl3 + TiAl + Ti3Al + TiB2 | H | [155] |
TiB2 | Ti | TC4 alloy | TiB +TiB2 + B27 | H and WR | [156] |
TiB2 + Al2O3 | Fe3Al | TC4 alloy | Ti3Al + Fe3Al + TiB2 + Al2O3 | H | [157] |
TiB2 | TC4 | TC4 alloy | TiB2 + TiB | H and WR | [158] |
TiN | Al | TC4 alloy | TiN + Ti3Al + TiAl + Al3Ti | H and WR | [159] |
TiN | Co42 | TC4 alloy | NiTi + TiN + TiC + TiB | H and WR | [107] |
TiN | Ti + Al | TC21 alloy | Ti3Al + Ti3AlN + TiN | H and WR | [160] |
TiCN | Ti | TC4 alloy | TiCN + TiO2 | H and WR | [161] |
h-BN | TC4 | TC4 alloy | TiN + TiB+ Ti3N1.29 + BN | WR and B | [162] |
h-BN | Ti | Ti-3Al-2V alloy | TiN + TiB + BN | H and WR | [163] |
TaC | NiCrBSi | TC4 alloy | TiC + TiB2 + TiB + TaC | OB | [164] |
WC | Ni60A | TA2 | WC + TiC | H, OB, and WR | [8] |
WC | Co + Ti | TC4 alloy | TiC + TiB2 + Cr3C2 + WC | WR | [165] |
WC | TC4 | TC4 alloy | W + WC + W2C + TiC | H | [166] |
Cladding Materials | Substrates | Strengthening Phases | Properties | Ref. |
---|---|---|---|---|
TC4 + NiCr-Cr3C2 + CeO2 | TC4 Alloy | FCC + CrTi4 + TiC | H | [68] |
Ni25 + CeO2 | TC4 Alloy | Ti2Ni + Ni3Ti + TiC | H + CP | [184] |
FeCoNiCrMo + CeO2 | TC4 Alloy | BCC + FCC | H + CP | [185] |
TC4 + NiCr-Cr3C2 + CeO2 | TC4 Alloy | FCC + CrTi4 + TiC | H + WR | [186] |
Ni60 + TiN + CeO2 | TC4 Alloy | Ti(C,N) + Ni3Ti + Cr7C3 + TiC | H + WR | [187] |
Co42 + B4C + CeO2 | TC4 Alloy | CoTi2 +NiTi + TiC + Cr7C3 + TiB2 + TiB | H + WR | [188] |
TiC + ZrO2 + CeO2 | TC4 Alloy | TiC + TiO + VC + TiVC2 | H + WR | [187] |
TiCN + SiO2 + CeO2 | TC4 Alloy | TiN + Ti6O + Ti3SiC2 | H + WR | [189] |
TC4-Ni60-CeO2 | Ti811 Alloy | TiC + Ti2Ni + TiB2 | H + WR | [190] |
Ni60A + CeO2 | TC4 Alloy | Ti2Ni + TiC + TiB2 | H + WR | [182] |
Ni60-TiN-C-CeO2 | TC4 Alloy | TiN+ Ti(C,N)+ TiC | H + WR | [191] |
TC4 + B4C + LaB6 | TC4 Alloy | TiC + TiB + TiB2 | H + WR | [146] |
Ti + AlB2 + LaB6 | TC4 Alloy | TiB + Ti3Al | H + WR | [192] |
TC4 + B4C + LaB6 | TC4 Alloy | TiO2 + TiC + TiB + TiB2 | OB | [193] |
NiCrBSi + WC + Y2O3 | TC4 Alloy | TiC + TiB2 + Ni3B | H + WR | [194] |
TC4 + NiCr-Cr3C2 + Y2O3 | TC4 Alloy | FCC + CrTi4 + TiC | H + WR | [195] |
Ti + h-BN + Y2O3 | TC4 Alloy | TiB + TiN | H + WR | [196] |
Ti + B4C + Al + Y2O3 | TC4 Alloy | TiB + TiC | H + WR | [197] |
Co42-B4C-SiC-Y2O3 | TC4 Alloy | CoTi + CoTi2 + NiTi + TiC + TiB2 + TiB + Cr7C3 + Ti5Si3 | H + WR | [105] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, H.; Zhao, C.; Xie, W.; Wu, D.; Du, B.; Zhang, X.; Wen, M.; Ma, R.; Li, R.; Jiao, J.; et al. Research Progress of Laser Cladding on the Surface of Titanium and Its Alloys. Materials 2023, 16, 3250. https://doi.org/10.3390/ma16083250
Zhao H, Zhao C, Xie W, Wu D, Du B, Zhang X, Wen M, Ma R, Li R, Jiao J, et al. Research Progress of Laser Cladding on the Surface of Titanium and Its Alloys. Materials. 2023; 16(8):3250. https://doi.org/10.3390/ma16083250
Chicago/Turabian StyleZhao, Hui, Chaochao Zhao, Weixin Xie, Di Wu, Beining Du, Xingru Zhang, Min Wen, Rui Ma, Rui Li, Junke Jiao, and et al. 2023. "Research Progress of Laser Cladding on the Surface of Titanium and Its Alloys" Materials 16, no. 8: 3250. https://doi.org/10.3390/ma16083250
APA StyleZhao, H., Zhao, C., Xie, W., Wu, D., Du, B., Zhang, X., Wen, M., Ma, R., Li, R., Jiao, J., Chang, C., Yan, X., & Sheng, L. (2023). Research Progress of Laser Cladding on the Surface of Titanium and Its Alloys. Materials, 16(8), 3250. https://doi.org/10.3390/ma16083250