Synthetic Calcium Silicate Biocomposite Based on Sea Urchin Skeleton for 5-Fluorouracil Cancer Delivery
Abstract
:1. Introduction
2. Experimental Part
2.1. Materials
2.2. Synthesis Method
2.3. Determination of the Sorption Capacity of Wollastonite, with Respect to 5-Fluorouracil
2.4. Characterization Methods
2.5. Analysis of Drug Release Kinetics
- (1)
- the Higuchi model:
- (2)
- first-order time model:
- (3)
- Baker-Lonsdale model:
- (4)
- Hixson-Crowell model:
2.6. Investigation of the Powder Resorption in the Ringer’s Solution
2.7. Release of the Drugs
3. Discussion
Discussion Analysis of Drug Release Kinetics
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chabner, B.A.; Roberts, T.G. Chemotherapy and the war on cancer. Nat. Rev. Cancer 2005, 5, 65–72. [Google Scholar] [CrossRef]
- Wan, Y.; Wang, J.; Xu, J.f.; Tang, F.; Chen, L.; Tan, Y.z.; Rao, C.l.; Ao, H.; Peng, C. Panax ginseng and its ginsenosides: Potential candidates for the prevention and treatment of chemotherapy-induced side effects. J. Ginseng Res. 2021, 45, 617–630. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.-Q.; Wang, X.-L.; He, D.-H.; Cheng, Y.-X. Protection against chemotherapy- and radiotherapy-induced side effects: A review based on the mechanisms and therapeutic opportunities of phytochemicals. Phytomedicin 2021, 80, 153402. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.; Long, J.B.; Chen, J.; Gross, C.P.; Feldman, D.R.; Steingart, R.M. Risk of Vascular Toxicity with Platinum Based Chemotherapy in Elderly Patients with Bladder Cancer. J. Urol. 2016, 195, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Grabenbauer, G.G.; Holger, G. Management of radiation and chemotherapy related acute toxicity in gastrointestinal cancer. Best Pract. Res. Clin. Gastroenterol. 2016, 30, 655–664. [Google Scholar] [CrossRef]
- Szeremet, A.; Wrobel, T.; Olbromski, M.; Glatzel-Plucinska, N. miRNAs as Indices Predicting Early Toxicity in High-Dose Melphalan Chemotherapy Followed by Autologous Stem Cell Support in Multiple Myeloma Patients. Clin. Lymphoma Myeloma Leuk. 2018, 18, S244. [Google Scholar] [CrossRef]
- Cameron, A.C.; McMahon, K.; Hall, M.; Neves, K.B.; Rios, F.J.; Montezano, A.C.; Welsh, P.; Waterston, A.; White, J.; Mark, P.B.; et al. Comprehensive Characterization of the Vascular Effects of Cisplatin-Based Chemotherapy in Patients with Testicular Cancer. JACC CardioOncol. 2020, 2, 443–455. [Google Scholar] [CrossRef]
- Ebright, M.I. Commentary: Acute kidney injury after intrapleural cisplatin: Minimizing collateral damage. J. Thorac. Cardiovasc. Surg. 2021, 161, 1522–1523. [Google Scholar] [CrossRef]
- Khunger, A.; Estfan, B. Cardiovascular Toxicities of Chemotherapy. Handb. Cancer Treat. Symptons Toxicities 2020, 93–106. [Google Scholar] [CrossRef]
- Cooper, C. Chemotherapy-Induced Peripheral Neuropathy, Cooper’s Fundam. Hand Ther. 2020, 495–500. [Google Scholar] [CrossRef]
- Bruna, J.; Alberti, P.; Calls-Cobos, A.; Caillaud, M.; Damaj, M.I.; Navarro, X. Methods for in vivo studies in rodents of chemotherapy induced peripheral neuropathy. Exp. Neurol. 2020, 325, 113154. [Google Scholar] [CrossRef]
- Sales, M.V.C.; Suemoto, C.K.; Apolinario, D.; Serrao, V.T.; Andrade, C.S.; Conceição, D.M.; Amaro, E.; de Melo, B.A.R.; Riechelmann, R.P. Effects of Adjuvant Chemotherapy on Cognitive Function of Patients with Early-stage Colorectal Cancer. Clin. Color. Cancer 2019, 18, 19–27. [Google Scholar] [CrossRef]
- Pérez-Herrero, E.; Fernández-Medarde, A. Advanced targeted therapies in cancer: Drug nanocarriers, the future of chemotherapy. Eur. J. Pharm. Biopharm. 2015, 93, 52–79. [Google Scholar] [CrossRef]
- Dewanjee, S.; Chakraborty, P.; Bhattacharya, H.; Singh, S.K.; Dua, K.; Dey, A.; Jha, N.K. Recent advances in flavonoid-based nanocarriers as an emerging drug delivery approach for cancer chemotherapy. Drug Discov. Today 2023, 28, 103409. [Google Scholar] [CrossRef]
- Boulikas, T.; Pantos, A.; Bellis, E.; Christofis, P. Designing platinum compounds in cancer: Structures and mechanisms. Cancer Ther. 2007, 5, 537–583. [Google Scholar]
- Miller, H.I. The Story of Taxol: Nature and Politics in the Pursuit of an Anti-Cancer Drug. Nat. Med. 2001, 7, 148. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, X.; Chen, C.; Chen, J.; Xu, B.; Chen, L.; Zhou, J.; Huang, Y.; Chen, W.; Teng, R.; et al. A predictive signature for oxaliplatin and 5-fluorouracil based chemotherapy in locally advanced gastric cancer. Transl. Oncol. 2021, 14, 100901. [Google Scholar] [CrossRef]
- Maxfield, L.; Shah, M.; Schwartz, C.; Tanner, L.S.; Appel, J. Intralesional 5-fluorouracil for the treatment of squamous cell carcinomas. J. Am. Acad. Dermatol. 2021, 84, 1696–1697. [Google Scholar] [CrossRef]
- Golubeva, O.Y.; Alikina, Y.A.; Brazovskaya, E.Y.; Ugolkov, V.V. Peculiarities of the 5-fluorouracil adsorption on porous aluminosilicates with different morphologies. Appl. Clay Sci. 2020, 184, 105401. [Google Scholar] [CrossRef]
- Luo, H.; Ji, D.; Li, C.; Zhu, Y.; Xiong, G.; Wan, Y. Layered nanohydroxyapatite as a novel nanocarrier for controlled delivery of 5-fluorouracil. Int. J. Pharm. 2016, 513, 17–25. [Google Scholar] [CrossRef]
- Çiftçi, H.; Arpa, M.D.; Gülaçar, İ.M.; Özcan, L.; Ersoy, B. Development and evaluation of mesoporous montmorillonite/magnetite nanocomposites loaded with 5-Fluorouracil. Microporous Mesoporous Mater. 2020, 303, 110253. [Google Scholar] [CrossRef]
- Huang, Q.J.; Zeng, H.Y.; Zhang, W.; Feng, B.; Liu, X.J.; Duan, H.Z.; Ding, P.X. Loading kinetics of 5-fluorouracil onto hydrotalcite and in vitro drug delivery. J. Taiwan Inst. Chem. Eng. 2016, 60, 525–531. [Google Scholar] [CrossRef]
- Chen, J.; Qiu, M.; Zhang, S.; Li, B.; Li, D.; Huang, X.; Qian, Z.; Zhao, J.; Wang, Z.; Tang, D. Journal of Colloid and Interface Science A calcium phosphate drug carrier loading with 5-fluorouracil achieving a synergistic effect for pancreatic cancer therapy. J. Colloid Interface Sci. 2022, 605, 263–273. [Google Scholar] [CrossRef] [PubMed]
- Putlyaev, V.I.; Safronova, T.V. A new generation of calcium phosphate biomaterials: The role of phase and chemical compositions. Glas. Ceram. 2006, 63, 99–102. [Google Scholar] [CrossRef]
- Zhao, Q.; Zhang, D.; Sun, R.; Shang, S.; Wang, H.; Yang, Y.; Wang, L.; Liu, X.; Sun, T.; Chen, K. Adsorption behavior of drugs on hydroxyapatite with different morphologies: A combined experimental and molecular dynamics simulation study. Ceram. Int. 2019, 45, 19522–19527. [Google Scholar] [CrossRef]
- Wan, Y.; Cui, T.; Xiong, G.; Li, W.; Tu, J.; Zhu, Y.; Luo, H. Magnetic lamellar nanohydroxyapatite as a novel nanocarrier for controlled delivery of 5-fluorouracil. Ceram. Int. 2017, 43, 4957–4964. [Google Scholar] [CrossRef]
- Uchida, A.; Shinto, Y.; Araki, N.; Ono, K. Slow release of anticancer drugs from porous calcium hydroxyapatite ceramic. J. Orthop. Res. 1992, 10, 440–445. [Google Scholar] [CrossRef] [PubMed]
- Santos, C.; Martins, M.A.; Franke, R.P.; Almeida, M.M.; Costa, M.E.V. Calcium phosphate granules for use as a 5-Fluorouracil delivery system. Ceram. Int. 2009, 35, 1587–1594. [Google Scholar] [CrossRef]
- Swet, J.H.; Pacheco, H.J.; Iannitti, D.A.; El-Ghanam, A.; McKillop, I.H. A silica-calcium-phosphate nanocomposite drug delivery system for the treatment of hepatocellular carcinoma: In vivo study. J. Biomed. Mater. Res. Part B Appl. Biomater. 2014, 102, 190–202. [Google Scholar] [CrossRef]
- Tahara, Y.; Ishii, Y. Apatite cement containing cis-diamminedichloroplatinum implanted in rabbit femur for sustained release of the anticancer drug and bone formation. J. Orthop. Sci. 2001, 6, 556–565. [Google Scholar] [CrossRef]
- El-Ghannam, A.; Ricci, K.; Malkawi, A.; Jahed, K.; Vedantham, K.; Wyan, H.; Allen, L.D.; Dréau, D. A ceramic-based anticancer drug delivery system to treat breast cancer. J. Mater. Sci. Mater. Med. 2010, 21, 2701–2710. [Google Scholar] [CrossRef]
- Prasad, S.R.; Kumar, T.S.S.; Jayakrishnan, A. Ceramic core with polymer corona hybrid nanocarrier for the treatment of osteosarcoma with co-delivery of protein and anti-cancer drug. Nanotechnology 2018, 29, 015101. [Google Scholar] [CrossRef]
- Alinavaz, S.; Mahdavinia, G.R.; Jafari, H.; Hazrati, M.; Akbari, A. Hydroxyapatite (HA)-based hybrid bionanocomposite hydrogels: Ciprofloxacin delivery, release kinetics and antibacterial activity. J. Mol. Struct. 2021, 1225, 129095. [Google Scholar] [CrossRef]
- Palierse, E.; Hélary, C.; Krafft, J.M.; Génois, I.; Masse, S.; Laurent, G.; Alvarez Echazu, M.I.; Selmane, M.; Casale, S.; Valentin, L.; et al. Baicalein-modified hydroxyapatite nanoparticles and coatings with antibacterial and antioxidant properties. Mater. Sci. Eng. C 2021, 118, 111537. [Google Scholar] [CrossRef]
- Liu, Y.; Tang, Y.; Wu, J.; Sun, J.; Liao, X.; Teng, Z.; Lu, G. Facile synthesis of biodegradable flower-like hydroxyapatite for drug and gene delivery. J. Colloid Interface Sci. 2020, 570, 402–410. [Google Scholar] [CrossRef]
- Palakurthy, S.; Samudrala, R.K. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Mater. Sci. Eng. C 2019, 98, 109–117. [Google Scholar] [CrossRef]
- Zenebe, C.G. A Review on the Role of Wollastonite Biomaterial in Bone Tissue Engineering. Biomed Res. Int. 2022, 2022, 4996530. [Google Scholar] [CrossRef]
- Maxim, L.D.; Niebo, R.; Utell, M.J.; McConnell, E.E.; Larosa, S.; Segrave, A.M. Wollastonite toxicity: An update. Inhal. Toxicol. 2014, 26, 95–112. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Buravlev, I.Y.; Portnyagin, A.S.; Belov, A.A.; Maiorov, V.Y.; Skurikhina, Y.E.; Merkulov, E.B.; Glavinskaya, V.O.; Nomerovskii, A.D.; et al. Reactive Spark Plasma Synthesis of Porous Bioceramic Wollastonite. Russ. J. Inorg. Chem. 2020, 65, 263–270. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Plekhova, N.G.; Buravlev, I.Y.; Zinoviev, S.V.; Mayorov, V.Y.; Fedorets, A.N.; Merkulov, E.B.; Shlyk, D.K.; et al. Synthetic nanostructured wollastonite: Composition, structure and “in vitro” biocompatibility investigation. Ceram. Int. 2021, 47, 22487–22496. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Afonin, I.S.; Evdokimov, I.O.; Mayorov, V.Y.; Portnyagin, A.S.; Agafonova, I.G.; Skurikhina, Y.E.; Medkov, M.A. Synthetic CaSiO3 sol-gel powder and SPS ceramic derivatives: “In vivo” toxicity assessment. Prog. Nat. Sci. Mater. Int. 2019, 29, 569–575. [Google Scholar] [CrossRef]
- Papynov, E.K.; Shichalin, O.O.; Apanasevich, V.I.; Portnyagin, A.S.; Yu, M.V.; Yu, B.I.; Merkulov, E.B.; Kaidalova, T.A.; Modin, E.B.; Afonin, I.S.; et al. Sol-gel (template) synthesis of osteoplastic CaSiO3/HAp powder biocomposite: “In vitro” and “in vivo” biocompatibility assessment. Powder Technol. 2020, 367, 762–773. [Google Scholar] [CrossRef]
- Higuchi, T. Mechanism of sustained-action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci. 1963, 52, 1145–1149. [Google Scholar] [CrossRef] [PubMed]
- Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J. Control. Release 1987, 5, 23–36. [Google Scholar] [CrossRef]
- Radin, S.; Chen, T.; Ducheyne, P. The controlled release of drugs from emulsified, sol gel processed silica microspheres. Biomaterials 2009, 30, 850–858. [Google Scholar] [CrossRef] [PubMed]
- Gu, C.; Le, V.; Lang, M.; Liu, J. Preparation of polysaccharide derivates chitosan-graft-poly(ɛ-caprolactone) amphiphilic copolymer micelles for 5-fluorouracil drug delivery. Colloids Surfaces B Biointerfaces 2014, 116, 745–750. [Google Scholar] [CrossRef] [PubMed]
- Abdel-Hameed, S.A.M.; El-Kady, A.M.; Marzouk, M.A. Magnetic glass ceramics for sustained 5-fluorouracil delivery: Characterization and evaluation of drug release kinetics. Mater. Sci. Eng. C 2014, 44, 293–309. [Google Scholar] [CrossRef]
- Shapkin, N.P.; Papynov, E.K.; Panasenko, A.E.; Khalchenko, I.G.; Mayorov, V.Y.; Drozdov, A.L.; Maslova, N.V.; Buravlev, I.Y. Synthesis of porous biomimetic composites: A sea urchin skeleton used as a template. Appl. Sci. 2021, 11, 8897. [Google Scholar] [CrossRef]
- Shapkin, N.P.; Khalchenko, I.G.; Kim, K.H.; Papynov, E.K.; Fedorets, A.N.; Maslova, N.V.; Balanov, M.I. Synthesis of polycalciumphenylsiloxane and composites based on the skeleton of a sea urchin with the resulting polymer. Chim. Techno Acta 2022, 9, 1–7. [Google Scholar] [CrossRef]
- Letia, I.A.; Groza, A. Contextual Extension with Concept Maps in the Argument Interchange Format. In Argumentation in Multi-Agent Systems: Fifth International Workshop, ArgMAS 2008, Estoril, Portugal, 12 May 2008; Revised Selected and Invited Papers 5; Springer: Heidelberg, Berlin, 2009; pp. 72–89. [Google Scholar]
- El-Kady, A.M.; Farag, M.M. Bioactive Glass Nanoparticles as a New Delivery System for Sustained 5-Fluorouracil Release: Characterization and Evaluation of Drug Release Mechanism. J. Nanomater. 2015, 2015, 1–11. [Google Scholar] [CrossRef]
- Xie, Z.; Walther, J.V. Dissolution stoichiometry and adsorption of alkali and alkaline earth elements to the acid-reacted wollastonite surface at 25 °C. Geochim. Cosmochim. Acta 1994, 58, 2587–2598. [Google Scholar] [CrossRef]
- Jiang, J.; Lu, X.; Huang, H.; Duanmu, C.; Zhou, S.; Gu, X.; Chen, J. Preparation of magnetic Ni/wollastonite and zeolite P/Ni/wollastonite composite fibers. Appl. Surf. Sci. 2012, 258, 8283–8288. [Google Scholar] [CrossRef]
- Yarusova, S.B.; Gordienko, P.S.; Krishna, R.; Azarova, Y.A.; Suponina, A.P.; Perfilev, A.V.; Sharma, Y.C. Sorption characteristics of economically viable silicate sorbents for sequestration of lead ions from aqueous solutions. Resour. Technol. 2017, 3, 213–221. [Google Scholar] [CrossRef]
Mathematical Models | Stage 1 (0–1 h) | Stage 2 (2–5 h) | Stage 3 (6–264 h) | |||
---|---|---|---|---|---|---|
Correlation Coefficient (𝑅𝐶) | Release Rate Constant | Correlation Coefficient (𝑅𝐶) | Release Rate Constant | Correlation Coefficient (𝑅𝐶) | Release Rate Constant | |
Higuchi | 0.9975 | k1 = 0.24 h–0.5 | 0.9951 | k1 = 0.06 h–0.5 | 0.9958 | k1 = 0.30 × 10−2 h–0.5 |
First-order | 0.9694 | k2 = 0.23 h–1 | 0.9842 | k2 = 0.03 h–1 | 0.9518 | k2 = 0.02 × 10−2 h–1 |
Baker-Lonsdale | 0.9951 | k3 = 0.01 h–1 | 0.9883 | k3 = 0.24 × 10−2 h–1 | 0.9562 | k3 = 0.30 × 10−4 h–1 |
Hixson-Crowell | 0.9659 | k4 = 0.07 h–1 | 0.9833 | k4 = 0.73 × 10−2 h–1 | 0.9505 | k4 = 0.70 × 10−4 h–1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papynov, E.K.; Shichalin, O.O.; Kapustina, O.V.; Buravlev, I.Y.; Apanasevich, V.I.; Mayorov, V.Y.; Fedorets, A.N.; Lembikov, A.O.; Gritsuk, D.N.; Ovodova, A.V.; et al. Synthetic Calcium Silicate Biocomposite Based on Sea Urchin Skeleton for 5-Fluorouracil Cancer Delivery. Materials 2023, 16, 3495. https://doi.org/10.3390/ma16093495
Papynov EK, Shichalin OO, Kapustina OV, Buravlev IY, Apanasevich VI, Mayorov VY, Fedorets AN, Lembikov AO, Gritsuk DN, Ovodova AV, et al. Synthetic Calcium Silicate Biocomposite Based on Sea Urchin Skeleton for 5-Fluorouracil Cancer Delivery. Materials. 2023; 16(9):3495. https://doi.org/10.3390/ma16093495
Chicago/Turabian StylePapynov, Evgeniy K., Oleg O. Shichalin, Olesya V. Kapustina, Igor Yu. Buravlev, Vladimir I. Apanasevich, Vitaly Yu. Mayorov, Alexander N. Fedorets, Alexey O. Lembikov, Danila N. Gritsuk, Anna V. Ovodova, and et al. 2023. "Synthetic Calcium Silicate Biocomposite Based on Sea Urchin Skeleton for 5-Fluorouracil Cancer Delivery" Materials 16, no. 9: 3495. https://doi.org/10.3390/ma16093495
APA StylePapynov, E. K., Shichalin, O. O., Kapustina, O. V., Buravlev, I. Y., Apanasevich, V. I., Mayorov, V. Y., Fedorets, A. N., Lembikov, A. O., Gritsuk, D. N., Ovodova, A. V., Gribanova, S. S., Kornakova, Z. E., & Shapkin, N. P. (2023). Synthetic Calcium Silicate Biocomposite Based on Sea Urchin Skeleton for 5-Fluorouracil Cancer Delivery. Materials, 16(9), 3495. https://doi.org/10.3390/ma16093495