A Novel Superhard, Wear-Resistant, and Highly Conductive Cu-MoSi2 Coating Fabricated by High-Speed Laser Cladding Technique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Coating
2.2. Testing and Characterization
2.3. Calculation
3. Results and Discussion
3.1. Microstructure Analysis of Coating Section
3.2. Performance Analysis
3.2.1. Hardness
3.2.2. Wear Resistance
3.2.3. Conductivity
4. Conclusions
- A Cu-MoSi2 coating was fabricated on the surface of copper alloy substrate, with enhanced particle dispersion of MoSi2. Notably, the Cu-30%MoSi2 coating exhibited the highest hardness (974.5 HV0.5) and the lowest wear amount (0.0619 mg/km). This corresponds to an approximately 15-fold increase in hardness compared to the copper base material (65 HV0.5), and a mere 0.45% of the wear amount (13.71 mg/km). Furthermore, the coating demonstrated a resistivity of 0.173 × 10−6 Ω·m, effectively fulfilling the requirements for both high hardness, wear resistance, and electrical conductivity.
- The elevated hardness and wear resistance performance were intricately intertwined with the dispersion of reinforcing MoxSiy particles. With the augmentation of MoSi2 content, microstructural refinement occurred, accompanied by a gradual and uniform dispersion of MoxSiy reinforcing particles. This orchestrated enhancement significantly elevated the coating’s hardness, concurrently altering the frictional wear mechanism and markedly ameliorating wear resistance.
- The adoption of direct incorporation of MoSi2 particles emerged as a pivotal factor enabling the preservation of favorable electrical conductivity within the coating. Employing first-principle analysis, it is ascertained that solid solution Si atoms constitute the principal culprits contributing to conductivity reduction. By adopting the strategy of direct MoSi2 particle incorporation, the extent of Si atom solid solution was effectively circumvented. As a consequence, despite a modest increase in resistivity, the coating’s electrical conductivity exhibited nominal variance, thereby substantiating the judiciousness of the chosen approach.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Li, Z.M.; Li, X.N.; Hu, Y.L.; Zheng, Y.H.; Yang, M.; Li, N.J.; Bi, L.X.; Liu, R.W.; Wang, Q.; Dong, C.; et al. Cuboidal γ’ phase coherent pre-cipitation-strengthened Cu-Ni-Al alloys with high softening temperature. Acta Mater. 2021, 203, 116458. [Google Scholar] [CrossRef]
- Aliofkhazraei, M.; Walsh, F.C.; Zangari, G.; Köçkar, H.; Alper, M.; Rizal, C.; Magagnin, L.; Protsenko, V.; Arunachalam, R.; Rezvanian, A.; et al. Development of electrodeposited multilayer coatings: A review of fabrication, microstructure, properties and applications. Appl. Surf. Sci. Adv. 2021, 6, 100141. [Google Scholar] [CrossRef]
- Bachmaier, A.; Pfaff, M.; Stolpe, M.; Aboulfadl, H.; Motz, C. Phase separation of a supersaturated nanocrystalline Cu-Co alloy and its influence on thermal stability. Acta Mater. 2015, 96, 269–283. [Google Scholar] [CrossRef]
- Montanari, R.; Varone, A. Flat-Top Cylinder Indenter for Mechanical Characterization: A Report of Industrial Applications. Materials 2021, 14, 1742. [Google Scholar] [CrossRef] [PubMed]
- Clyne, T.; Withers, P. An Introduction to Metal Matrix Composites; Cambridge University Press: Cambridge, UK, 1995. [Google Scholar]
- Li, X.P.; Ji, G.; Chen, Z.; Addad, A.; Wu, Y.; Wang, H.W.; Vleugels, J.; Van Humbeeck, J.; Kruth, J.P. Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater. 2017, 129, 183–193. [Google Scholar] [CrossRef]
- Samoilova, O.; Shaburova, N.; Pashkeev, K.; Samodurova, M.; Trofimov, E. Al0.25CoCrFeNiV High Entropy Alloy Coating Deposited by Laser Cladding on Stainless Steel. Materials 2022, 15, 7058. [Google Scholar] [CrossRef]
- Mortensen, A.; Llorca, J. Metal matrix composites. Annu. Rev. Mater. Res. 2010, 40, 243–270. [Google Scholar] [CrossRef]
- Jia, L.; Rong, X.; Zhao, D.; Zhang, X.; He, C.; Zhao, N. Microstructural characteristic and mechanical properties of the in-situ MgAl2O4 reinforced Al matrix composite based on Al-Mg-ZnO system. J. Alloy Compd. 2022, 891, 161991. [Google Scholar] [CrossRef]
- Zhang, Y.; Miyamoto, G.; Furuhara, T. Enhanced hardening by multiple microalloying in low carbon ferritic steels with interphase precipitation. Scr. Mater. 2022, 212, 114558. [Google Scholar] [CrossRef]
- Jiang, S.; Wang, H.; Wu, Y.; Liu, X.; Chen, H.; Yao, M.; Gault, B.; Ponge, D.; Raabe, D.; Hirata, A.; et al. Ultrastrong steel via minimal lattice misfit and high-density nanoprecipitation. Nature 2017, 544, 460–464. [Google Scholar] [CrossRef]
- Liang, Y.J.; Wang, L.; Wen, Y.; Cheng, B.; Wu, Q.; Cao, T.; Xiao, Q.; Xue, Y.; Sha, G.; Wang, Y.; et al. High-content ductile coherent nanoprecipitates achieve ultrastrong high-entropy alloys. Nat. Commun. 2018, 9, 4063. [Google Scholar] [CrossRef] [PubMed]
- Blixt, K.H.; Hallberg, H. Grain boundary and particle interaction: Enveloping and pass-through mechanisms studied by 3D phase field crystal simulations. Mater. Des. 2022, 220, 110845. [Google Scholar] [CrossRef]
- Jadhav, S.D.; Dadbakhsh, S.; Goossens, L.; Kruth, J.P.; Van Humbeeck, J.; Vanmeensel, K. Influence of selective laser melting process parameters on textureevolution in pure copper. J. Mater. Process. Technol. 2019, 270, 47–58. [Google Scholar] [CrossRef]
- Tran, Q.T.; Chinnappan, A.; Lee, K.J.; Loc, H.N.; Tran, T.L.; Wang, G.; Kumar, V.V.; Jayathilaka, A.D.M.W.; Ji, D.; Doddamani, M.; et al. 3D printing of highly pure copper. Metals 2019, 9, 756. [Google Scholar] [CrossRef]
- Yadav, S.; Paul, C.P.; Jinoop, A.N.; Rai, A.K.; Bindra, K.S. Laser directed energy deposition based additive manufacturing of copper: Process development and material characterizations. J. Manuf. Process. 2020, 58, 984–997. [Google Scholar] [CrossRef]
- Sabzi, H.E.; Hernandez-Nava, E.; Li, X.-H.; Fu, H.; San-Martín, D.; Rivera-Díaz-Del-Castillo, P.E. Strengthening control in laser powder bed fusion of austenitic stainless steels via grain boundary engineering. Mater. Des. 2021, 212, 110246. [Google Scholar] [CrossRef]
- Khairallah, S.A.; Anderson, A.T.; Rubenchik, A.; King, W.E. Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones. Acta Mater. 2016, 108, 36–45. [Google Scholar] [CrossRef]
- Gu, D.; Shi, X.; Poprawe, R.; Bourell, D.L.; Setchi, R.; Zhu, J. Material-structure-per formance integrated laser-metal additive manufacturing. Science 2021, 372, eabg1487. [Google Scholar] [CrossRef]
- Gu, D.; Zhang, H.; Dai, D.; Xia, M.; Hong, C.; Poprawe, R. Laser additive manu facturing of nano-TiC reinforced ni-based nanocomposites with tailored mi crostructure and performance. Compos. Part. B Eng. 2019, 163, 585–597. [Google Scholar] [CrossRef]
- Perrin, T.; Achache, S.; Meausoone, P.J.; Sanchette, F. Characterization of WC-doped NiCrBSi coatings deposited by Laser Cladding; effects of particle size and content of WC powder. Surf. Coat. Technol. 2021, 425, 127703. [Google Scholar] [CrossRef]
- Li, W.Y.; Yang, X.F.; Xiao, J.P.; Hou, Q.M. Effect of WC mass fraction on the microstructure and friction properties of WC/Ni60 laser cladding layer of brake discs. Ceram. Int. 2021, 47, 28754–28763. [Google Scholar] [CrossRef]
- Zenk, C.; Gibson, J.S.K.L.; Maier-Kiener, V.; Neumeier, S.; Goken, M.; Korte-Kerzel, S. Low temperature deformation of MoSi2 and the effect of Ta, Nb and Al as alloying elements. Acta Mater. 2019, 181, 385398. [Google Scholar] [CrossRef]
- Silvestroni, L.; Stricker, K.; Sciti, D.; Kleebe, H.J. Understanding the oxidation behavior of a ZrB2-MoSi2 composite at ultra-high temperatures. Acta Mater. 2018, 151, 216228. [Google Scholar] [CrossRef]
- Hu, D.; Fu, Q.G.; Zhou, L.; Liu, B.; Cheng, C.Y.; Li, X.X.; Sun, J. Self-healing improvement strategy of thermally sprayed MoSi2 coating at 1773 K: From calculation to experiment. Corros. Sci. 2021, 189, 109–599. [Google Scholar] [CrossRef]
- Cao, S.L.; Liang, J.; Zhou, J.S. Evolution in microstructure features and properties of Mo-containing Fe-Cr-Ni-B-Si composite coatings by laser cladding. Mater. Charact. 2022, 188, 111926. [Google Scholar] [CrossRef]
- Zhang, P.L.; Liu, X.P.; Lu, Y.L.; Yan, H.; Yu, Z.S.; Li, C.G.; Lu, Q.H. Microstructure and wear behavior of Cu–Mo–Si coatings by laser cladding. Appl. Surf. Sci. 2014, 311, 709–714. [Google Scholar]
- Lee, J.; Beach, J.; Bellon, P.; Averback, R.S. High thermal coarsening resistance of irradiation-induced nanoprecipitates in Cu-Mo-Si alloys. Acta Mater. 2017, 132, 432443. [Google Scholar] [CrossRef]
- Scattergood, R.O.; Bacon, D.J. The Orowan mechanism in anisotropic crystals. Philos. Mag. 1975, 31, 179–198. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, H.; Yao, P.; Fan, K.; Liu, Y.; Zhao, L.; Xiao, Y.; Gong, T.; Deng, M. Effect of Fe and Cr on the macro/micro tribological behaviours of copper-based composites. Materials 2021, 14, 3417. [Google Scholar] [CrossRef]
- Yetim, T.; Turalioğlu, K.; Taftali, M.; Tekdir, H.; Kovaci, H.; Yetim, A.F. Synthesis and characterization of wear and corrosion resistant Ni-doped Al2O3 nanocomposite ceramic coatings by sol-gel method. Surf. Coat. Technol. 2022, 444, 128659. [Google Scholar] [CrossRef]
- Zhao, Y.H.; Zhan, Z.J.; Lv, X.Z.; Cao, H.Y. Microstructure and Properties of ZrB2-SiC Reinforced Copper Matrix Composite Coatings Prepared by Laser Cladding. Materials 2022, 15, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Leonard, W.F.; Lin, S.F. The validity of Matthiessen’s rule for metallic films. Thin Solid Films 1975, 28, L9–L12. [Google Scholar] [CrossRef]
- Brown, R.A. A dislocation model of grain boundary electrical resistivity. J. Phys. F Met. Phys. 1977, 7, 1477–1488. [Google Scholar] [CrossRef]
- Zhu, L.; Chen, P.; Cai, Z.-M.; Feng, P.-Z.; Kang, X.-Q.; Akhtar, F.; Wang, X.-H. Fabrication of MoSi2 coatings on molybdenum and its high-temperature anti-oxidation properties. Trans. Nonferrous Met. Soc. China 2022, 32, 935–946. [Google Scholar] [CrossRef]
- Gao, M.Y.; Li, S.C.; Guan, W.M.; Xie, H.B.; Wang, X.X.; Liu, J.B.; Wang, H.T. Excellent thermal shock resistance of NiCrAlY coatings on copper substrate via laser cladding. J. Mater. Sci. Technol. 2022, 130, 93–102. [Google Scholar] [CrossRef]
Compositions | Cu (wt.%) | MoSi2 (wt.%) |
---|---|---|
Cu-10MoSi2 | 90 | 10 |
Cu-15MoSi2 | 85 | 15 |
Cu-20MoSi2 | 80 | 20 |
Cu-25MoSi2 | 75 | 25 |
Cu-30MoSi2 | 70 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Y.; Zhao, X.; Zhai, P.; Fan, P.; Xu, J.; Xu, Y.; Yu, Z.; Li, M.; Zhang, Y.; Gao, D.; et al. A Novel Superhard, Wear-Resistant, and Highly Conductive Cu-MoSi2 Coating Fabricated by High-Speed Laser Cladding Technique. Materials 2024, 17, 20. https://doi.org/10.3390/ma17010020
Li Y, Zhao X, Zhai P, Fan P, Xu J, Xu Y, Yu Z, Li M, Zhang Y, Gao D, et al. A Novel Superhard, Wear-Resistant, and Highly Conductive Cu-MoSi2 Coating Fabricated by High-Speed Laser Cladding Technique. Materials. 2024; 17(1):20. https://doi.org/10.3390/ma17010020
Chicago/Turabian StyleLi, Yanmiao, Xiaojun Zhao, Pengyuan Zhai, Pengyu Fan, Jiahui Xu, Yuefan Xu, Zengkai Yu, Muyang Li, Yongtong Zhang, Dawei Gao, and et al. 2024. "A Novel Superhard, Wear-Resistant, and Highly Conductive Cu-MoSi2 Coating Fabricated by High-Speed Laser Cladding Technique" Materials 17, no. 1: 20. https://doi.org/10.3390/ma17010020
APA StyleLi, Y., Zhao, X., Zhai, P., Fan, P., Xu, J., Xu, Y., Yu, Z., Li, M., Zhang, Y., Gao, D., Liu, S., Cai, Z., & Xiao, L. (2024). A Novel Superhard, Wear-Resistant, and Highly Conductive Cu-MoSi2 Coating Fabricated by High-Speed Laser Cladding Technique. Materials, 17(1), 20. https://doi.org/10.3390/ma17010020