The Effect of Replacing Ni with Mn on the Microstructure and Properties of Al2O3-Forming Austenitic Stainless Steels: A Review
Abstract
:1. Introduction
2. Phase Composition and Microstructure
3. Tensile Properties and Creep Resistance
3.1. Tensile Properties
3.2. Creep Resistance
4. Antioxidant Properties
5. Comparison with Traditional Austenitic Stainless Steel
6. Conclusions
- (1)
- Increasing the Mn content and decreasing the Ni content in AFA steel will suppress the precipitation of the B2–NiAl phase and NbC phase, but increase the M23C6 phase while the nano-scale α-Cu phase is not affected. The room-temperature and high-temperature ultimate tensile strength slightly decreased, the room-temperature elongation slightly increased, and high-temperature elongation significantly decreased with the increase in Mn content. Further research is needed to determine the optimal amount of substitution content of Mn for Ni.
- (2)
- The substitution of Mn for Ni seriously damages the creep properties. Mn promotes σ phase precipitation which can easily initiate crack propagation. Therefore, it is worth studying how can the σ phase precipitation be restrained through composition design and mechanical heat treatment for the Mn-added AFA steel.
- (3)
- Mn is easy to segregate and has high solubility in the oxide layer of Cr2O3, which promotes the conversion of Cr2O3 oxide into the spinel CrMn1.5O4 and damages the antioxidant properties. But the solubility of Mn in the oxide layer of Al2O3 is nearly zero. Determining how the segregation of Mn can be restrained, how the formation rate of Al2O3 oxide film can be accelerated, and how the loss of Mn by anti-oxidation elements such as Si can be compensated are the goals of future research.
- (4)
- In AFA steel and general austenitic stainless steel, the effect of Mn replacing Ni basically shows the same trend. Replacing Ni with Mn will reduce UTS and improve plasticity. And, it can damage the oxidation resistance and creep resistance. More efforts are necessary to investigate the effect of thermal mechanical treatment and composition design on property improvement to compensate for Mn-substituted Ni.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shen, L.; Wu, B.J.; Zhao, K.; Peng, H.B.; Wen, Y.H. Reason for negative effect of Nb addition on oxidation resistance of alumina-forming austenitic stainless steel at 1323 K. Corros. Sci. 2021, 191, 109–754. [Google Scholar] [CrossRef]
- Rozmus-Górnikowska, M.; Kusiñski, J.; Cempura, G.; Morgiel, J. Microstructure and phase composition of transition zone between low alloyed steel boiler tube and an austenitic stainless steel weld overlay produced by cold metal transfer method. Int. J. Press. Vessel. Pip. 2023, 203, 104951. [Google Scholar] [CrossRef]
- Kisko, A.; Hamada, A.S.; Talonen, J.; Porter, D.; Karjalainen, L.P. Effects of reversion and recrystallization on microstructure and mechanical properties of Nb-alloyed low-Ni high-Mn austenitic stainless steels. Mater. Sci. Eng. A 2016, 657, 359–370. [Google Scholar] [CrossRef]
- Sheik, S.; Tirumalla, A.; Gurrala, A.K.; Mohammed, R. Effect of microstructural morphology on corrosion susceptibility ofaustenitic and super austenitic stainless steels. Mater. Today Proc. 2022, 66, 514–518. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Brady, M.P.; Lu, Z.P.; Maziasz, P.J.; Liu, C.T.; Pint, B.A.; More, K.L.; Meyer, H.M.; Payzant, E.A. Creep-resistant, Al2O3-forming austenitic stainless steels. Science 2007, 316, 433–436. [Google Scholar] [CrossRef] [PubMed]
- Rasooli, N.; Shirazi, H.; Nili-Ahmadabadi, M. Significance of Mn concentration on aging behavior, microstructure evolution and mechanical properties of FeeNieMn alloys. J. Mater. Res. Technol. 2023, 24, 1–15. [Google Scholar] [CrossRef]
- Kombaiah, B.; Edmondson, P.D.; Wang, Y.; Boatner, L.A.; Zhang, Y. Mechanisms of radiation-induced segregation around He bubbles in aFe-Cr-Ni crystal. J. Nucl. Mater. 2019, 514, 139–147. [Google Scholar] [CrossRef]
- Barcellini, C.; Harrison, R.W.; Dumbill, S.; Donnelly, S.E.; Jimenez-Melero, E. Local chemical instabilities in 20Cr-25Ni Nb-stabilised austenitic stainless steel induced by proton irradiation. J. Nucl. Mater. 2019, 518, 95–107. [Google Scholar] [CrossRef]
- Hao, G.J.; Lin, J.P.; Zhang, Y.; Chen, G.L.; Lu, Z.P. Ti-Zr-Be ternary bulk metallic glasses correlated with binary eutectic clusters. Mater. Sci. Eng. A 2010, 527, 6248–6250. [Google Scholar] [CrossRef]
- He, L.F.; Roman, P.; Leng, B.; Sridharan, K.; Allen, T.R. Corrosion behavior of an alumina forming austenitic steel exposed to supercritical carbon dioxide. Corros. Sci. 2014, 82, 67–76. [Google Scholar] [CrossRef]
- Sun, S.; Zhou, Z.; Xu, S.; Wang, M. Hot deformation behavior and processing map of a Fe-25Ni-16Cr-3Al alumina-forming austenitic steel. Mater. Werkst. 2018, 49, 1135–1144. [Google Scholar] [CrossRef]
- Vaško, A.; Uhríčik, M.; Belan, J.; Pastierovičovái, L.; Kaña, V. Fatigue behaviour of NiCr-type of austenitic nodular cast iron. Procedia Struct. Integr. 2023, 51, 129–134. [Google Scholar] [CrossRef]
- Aranda, M.M.; Rementeria, R.; Poplawsky, J.; Urones-Garrote, E.; Capdevila, C. The role of C and Mn at the austenite/pearlite reaction front during non-steady-state pearlite growth in a Fe-C-Mn steel. Scr. Mater. 2015, 104, 67–70. [Google Scholar] [CrossRef]
- Ambade, S.; Khan, F.; Dahikar, A.; Bhonde, Y.; Shelare, S.; Tembhurkar, C.; Meshram, D. Dissimilar welding of austenitic SS and ferritic SS in last decades. Mater. Today Proc. 2023, in press. [Google Scholar] [CrossRef]
- Lee, C.; Lee, Y.; Lee, C.; Hong, S. Possibility of Mn substitution of Ni through evaluation of mechanical properties and corrosion resistance in superaustenitic stainless steel weld metal. Mater. Sci. Eng. A 2018, 733, 16–23. [Google Scholar] [CrossRef]
- Zhang, Y.C.; Li, M.C.; Bi, H.Y.; Chen, D.X.; Gu, J.Q.; Chang, E. Mechanical properties of cold-rolled metastable Cr-Mn-Ni-N austenitic stainless steel at low ambient temperature. Mater. Sci. Eng. A 2019, 759, 224–233. [Google Scholar] [CrossRef]
- Park, M.; Kang, M.; Park, G.W.; Jang, G.; Kim, B.; Kim, H.C.; Jeon, J.B.; Kim, H.; Kwon, S.H.; Kim, B.J. The effects of post weld heat treatment for welded high-Mn austenitic steels using the submerged arc welding method. J. Mater. Res. Technol. 2022, 18, 4497–4512. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Ren, Q.Q.; Brady, M.P. Role of Cr Content in Microstructure, Creep, and Oxidation Resistance of Alumina-Forming Austenitic Alloy at 850–900 °C. Metals 2022, 12, 717. [Google Scholar] [CrossRef]
- Jung, S.; Jo, Y.H.; Joen, C.W.; Choi, W.M.; Lee, B.J.; Oh, Y.J.; Kim, G.Y.; Jang, S. Lee, S. Effects of Mn and Mo addition on high-temperature tensile properties in high-Ni-containing austenitic cast steels used for turbo-charger application. Mater. Sci. Eng. A 2017, 682, 147–155. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Santella, M.L.; Liu, C.T.; Evans, N.D.; Maziasz, P.J.; Brady, M.P. Evaluation of Mn substitution for Ni in alumina-forming austenitic stainless steels. Mater. Sci. Eng. A 2009, 524, 176–185. [Google Scholar] [CrossRef]
- Brady, M.P.; Magee, J.; Yamamoto, Y.; Helmick, D.; Wang, L. Co-optimization of wrought alumina-forming austenitic stainless steel composition ranges for high-temperature creep and oxidation/corrosion resistance. Mater. Sci. Eng. A 2014, 590, 101–115. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Cao, Y.F.; Wen, W.Y.; Lu, Z.P.; Zhang, J.R.; Liu, Y.F.; Chen, P.L. Effects of Mn content on austenite stability and mechanical properties of low Ni alumina-forming austenitic heat-resistant steel: A first-principles study. Sci. Rep. 2023, 13, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Choi, W.S.; Park, H. Comments on “Formation of M 23 C 6 -type precipitates and chromium-depleted zones in austenite stainless steel, Scr. Mater. 65 (2011) 509–512”. Scr. Mater. 2022, 209, 114412. [Google Scholar] [CrossRef]
- Khorrami, M.; Hanzaki, A.Z.; Abedi, H.R.; Moallemi, M.; Mola, J.; Chen, G. On the effect of Mn-content on the strength-ductility balance in Ni-free high N transformation induced plasticity steels. Mater. Sci. Eng. A 2021, 814, 141–260. [Google Scholar] [CrossRef]
- Elger, R.; Magnusson, H.; Frisk, K. Modelling internal nitridation in an alumina-forming austenitic stainless steel. Mater. Corros. 2017, 68, 2. [Google Scholar] [CrossRef]
- Jiao, Z.B.; Luan, J.H.; Miller, M.K.; Yu, C.Y.; Liu, C.T. Effects of Mn partitioning on nanoscale precipitation and mechanical properties of ferritic steels strengthened by NiAl nanoparticles. Acta Mater. 2015, 84, 283–291. [Google Scholar] [CrossRef]
- Ghaemifar, S.; Mirzadeh, H. Precipitation kinetics of niobium carbide (NbC) during homogenization heat treatment of additively manufactured inconel 718 superalloy. J. Mater. Res. Technol. 2023, 25, 1774–1781. [Google Scholar] [CrossRef]
- Abbasi, M.; Park, I.; Park, H.; Ayer, R. Origin of fine needle-like M23C6 carbides in a heat resistant steel after extended service. Mater. Charact. 2022, 188, 111916. [Google Scholar] [CrossRef]
- Stewart, C.A.; Fonda, R.W.; Knipling, K.E. Mn-stabilized austenitic steel strengthened by nano-scale β-NiAl (B2), FCC-Cu, and carbides via ICME design. Scr. Mater. 2021, 200, 113903. [Google Scholar] [CrossRef]
- Kolli, P.R.; Seidman, D.N. Co-Precipitated and Collocated Carbides and Cu-Rich Precipitates in a Fe–Cu Steel Characterized by Atom-Probe Tomography. Microscpy Microanal. 2014, 20, 1727–1739. [Google Scholar] [CrossRef]
- Peterson, A.; Baker, I. The formation mechanism, growth, and effect on the mechanical properties of precipitate free zones in the alumina-forming austenitic stainless steel Fe-20Cr-30Ni-2Nb-5Al during creep. Mater. Sci. Eng. A 2021, 820, 141–561. [Google Scholar] [CrossRef]
- Kamata, I.; Hoshino, N.; Betsuyaku, K.; Kanda, T.; Tsuchida, H. Investigation of propagation and coalescence of threading screw and mixed dislocations in 4H-SiC crystals grown by the high-temperature gas source method. J. Cryst. Growth 2022, 590, 126676. [Google Scholar] [CrossRef]
- Youssef, M.; EI-Shenawy, E.H.; Khair-EIdeen, W.; Adachi, T.; Nofal, A.; Hassan, M.A. The Influences of Nb Microalloying and Grain Refinement Thermal Cycling on Microstructure and Tribological Properties of Armox 500T. Materials 2023, 16, 7485. [Google Scholar] [CrossRef] [PubMed]
- Aprajak; Jha, P.; Mohapatra, S.; Behera, A.; Joshi, K.; Rahul; Hasan, M.; Sinha, D. A brief review of processing techniques for NiAl intermetallic composites. Mater. Today Proc. 2023, 78, 560–564. [Google Scholar] [CrossRef]
- Muñoz-Saldaña, J.; Valencia-Ramirez, A.; Castillo-Perea, L.A.; Diaz-De la Torre, S.; Caceres-Diaz, L.A.; Alvarado Orozco, J.M.; Giraldo Betancur, A.L.; Schulz, U. Oxidation behavior of dense Yttrium doped B2-NiAl bulk material fabricated by ball milling self-propagating high-temperature synthesis and densified by spark plasma sintering. Surf. Coat. Technol. 2021, 421, 127448. [Google Scholar] [CrossRef]
- Bestautte, J.; Oudriss, A.; Lenci, M.; Bechet, D.; Obadia, Z.; Feaugas, X.; Christien, F. A multi-method approach to the study of hydrogen trapping in a maraging stainless steel: The impact of B2-NiAl precipitates and austenite. Corros. Sci. 2023, 224, 111509. [Google Scholar] [CrossRef]
- Yamamoto, Y.; Muralidharan, G.; Brady, M.P. Development of L12-ordered Ni3(Al, Ti)-strengthened alumina-forming austenitic stainless steel alloys. Scr. Mater. 2013, 69, 816–819. [Google Scholar] [CrossRef]
- Hu, B.; Trotter, G.; Wang, Z.W.; Chen, S.; Cai, Z.H.; Baker, I. Effect of boron and carbon addition on microstructure and mechanical properties of the aged gamma-prime strengthened alumina-forming austenitic alloys. Intermetallics 2017, 90, 36–49. [Google Scholar] [CrossRef]
- Seif, E.; Rösler, J.; Werner, J.; Weirich, T.E.; Mayer, J. Investigation of TaC and TiC for Particle Strengthening of Co-Re-Based Alloys. Materials 2023, 16, 7297. [Google Scholar] [CrossRef]
- Kumar, M.; Majumdar, J.D.; Manna, I. Development of Gd2O3 doped yttria stabilized zirconia based thermal barrier coating for improved high temperature oxidation and erosion resistance. Ceram. Int. 2023, 49, 38081–38093. [Google Scholar] [CrossRef]
- Kerbstadt, M.; White EM, H.; Galetz, M.C.; Galetz, M.C. Novel Cr/Si-Slurry Diffusion Coatings for High Temperature. Materials 2023, 16, 7480. [Google Scholar] [CrossRef] [PubMed]
- Mekky, A.-B.H. Electronic structure and stability of a pure sodium alanate clusters Na12Al12H48, and the interstitial space-doped with Ti, C and H atoms, as a promising hydrogen storage system: Density functional theory. Int. J. Hydrogen Energy 2023, 48, 20430–20440. [Google Scholar] [CrossRef]
- Abu-Oqail AM, I.; Rehab, I.A.; Abu-Okail, M.; Elzayady, N. Fabrication and characterization of Ag coated Al2O3/GNs reinforced Cu nanocomposites for renewable energy applications. Ceram. Int. 2023, 49, 30958–30971. [Google Scholar] [CrossRef]
- Ahuir-Torres, J.I.; Sharp, M.; Seddighi, M. Influence of the surface roughness and pulse energy in the production of dimple features on Cr2O3 surfaces. Procedia CIRP 2020, 94, 930–935. [Google Scholar] [CrossRef]
- Kumar, R.; Narayan Bairwa, K.; Raghurami Reddy, D. Influence of addition of Al2O3 and SiC on tensile and flexural characteristics of epoxy/glass fiber hybrid polymer composite. Mater. Today Proc. 2023; in press. [Google Scholar] [CrossRef]
- Yamagata, R.; Nakamura, J.; Itoi, T.; Takeyama, M.; Yoshimi, K. Site-occupation and structure relaxation behavior of C14-type stoichiometric and iron-rich Fe2Nb Laves phases with addition of aluminum or chromium. Mater. Charact. 2023, 206, 113447. [Google Scholar] [CrossRef]
- Fuhr, A.S.; Shields, A.E.; Nykwest, E.; Brubaker, Z.E.; Niedziela, J.L.; Miskowiec, A.J. Pressure modulated charge transfer and phonon interactions drive phase transitions in uranium–aluminum laves phases. Comput. Mater. Sci. 2024, 231, 112610. [Google Scholar] [CrossRef]
- Joonoh, M.; Seong-Jun, P.; Jae Hoon, J.; Tae-Ho, L.; Chang-Hoon, L.; Hyun-Uk, H.; Heung Nam, H.; Jaeeun, L.; Changhee, L. Investigations of the microstructure evolution and tensile deformation behavior of austenitic Fe-Mn-Al-C lightweight steels and the effect of Mo addition. Acta Mater. 2020, 10, 226–235. [Google Scholar]
- Pardo, A.; Merino, M.C.; Coy, A.E.; Viego, F.; Arrabal, R.; Matykina, E. Pitting corrosion behaviour of austenitic stainless steels-combining effects of Mn and Mo additions. Corros. Sci. 2008, 50, 1796–1806. [Google Scholar] [CrossRef]
- Silva, R.; Young, D.J.; Martins Junior, C.B.; Vacchi, G.S.; Teixeira Alberto, C.A.; Sousa Malafaia, A.M.; Pascal, C.; Rovere, C.A.D. Role of cerium addition in enhancing the oxidation resistance of austenitic Fe-Mn-Si-Cr-Ni shape memory stainless steels at 800 °C: Microstructure and oxidation mechanism. Corros. Sci. 2022, 209, 110788. [Google Scholar] [CrossRef]
- Hamada, A.S.; Karjalainen, L.P.; Misra, R.D.; Talonen, J. Contribution of deformation mechanisms to strength and ductility in two Cr-Mn grade austenitic stainless steels. Mater. Sci. Eng. A 2013, 559, 336–344. [Google Scholar] [CrossRef]
- Zhang, G.F.; Wang, S.T.; Li, B.; Chen, B.H.; Zhang, B.; Zhang, X.Y.; Ma, M.Z.; Liu, R.P. Achieving high strength and ductility in Fe-Mn-Al-C austenitic steel via vanadium microalloying and aging. J. Mater. Res. Technol. 2023, 24, 8443–8457. [Google Scholar] [CrossRef]
- Aramesh, H.; Balak, Z.; Shahedifar, V. Calculating the interdiffusion coefficient in TaC/VC diffusion couple and investigation of solid solution formation and mechanical properties. J. Alloys Compd. 2023, 967, 171689. [Google Scholar] [CrossRef]
- Wang, Y.W.; Wang, H.H.; Su, Y.H.; Xu, P.G.; Shinohara, T. Cryogenic impact fracture behavior of a high-Mn austenitic steel using electron backscatter diffraction and neutron Bragg-edge transmission imaging. Mater. Sci. Eng. A 2023, 887, 145768. [Google Scholar] [CrossRef]
- Mao, L.Y.; Luo, Z.A.; Huang, C.; Zhou, H.Y.; Zhang, X.M. Exploring the hydrogen embrittlement behavior in nickel-economized austenitic stainless steel: Investigating the role of manganese in modifying hydrogen-induced crack mechanisms. Corros. Sci. 2023, 226, 111691. [Google Scholar] [CrossRef]
- Lee, W.J.; Lee, J.Y.; Oh, S.K.; Yang, H.N.; Park, J.Y.; Baek, U.B.; Lee, Y.K. Temperature dependency of hydrogen embrittlement resistance of austenitic Fe-24Mn-3Cr-0.5Cu-0.47C steel. Mater. Sci. Eng. A 2024, 889, 145838. [Google Scholar] [CrossRef]
- Xie, Z.Q.; Hui, W.J.; Bai SY, H.; Zhang, Y.J.; Zhao, X.L.; Li, B.Y. Effects of annealing temperature and V addition on microstructure and mechanical properties of Fe-Mn-Al-C austenitic low-density steel. Mater. Today Commun. 2023, 35, 106328. [Google Scholar] [CrossRef]
- Seede, R.; Whitt, A.; Ye, J.H.; Gibbons, S.; Flater, P.; Gaskey, B.; Elwany, A.; Arroyave, R.; Karaman, I. A lightweight Fe–Mn–Al–C austenitic steel with ultra-high strength and ductility fabricated via laser powder bed fusion. Mater. Sci. Eng. A 2023, 874, 145007. [Google Scholar] [CrossRef]
- Zhang, W.Y.; Wu, S.J.; Chen, L.; Liu, J.L.; Jia, L.C.; Yan, D.; Jian, L. Influence of Mn Content in the Alloy on the Oxidation, Electrical and Volatilization Behavior of Co-Coated Steel Interconnects. J. Electrochem. Soc. 2023, 170, 024509. [Google Scholar] [CrossRef]
- Lu, Z.P.; Zhao, Y.J.; Deng, Y.J.; Chen, P.L.; Wen, W.Y. Evolution of the oxide layers of an aluminum-forming austenitic heat-resistant steel with high-Mn substitution for Ni: Experiment and first-principle calculations. Mater. Charact. 2023, 205, 113334. [Google Scholar] [CrossRef]
- Brinkmann, J.P.; Rodehorst, U.; Wang, J.; Siozios, V.; Soizios, V.; Yang, Y.; Winter, M.; Li, J. Understanding the effect of Nb substitution on Li-Mn-rich layered oxides. Electrochim. Acta 2021, 390, 138801. [Google Scholar] [CrossRef]
- Su, M.H.; Zhao, J.H.; Gu, C. Investigation of the high-temperature oxidation behavior of Fe-14Cr-9Mn-2.5Ni austenitic stainless steel in N2-21 vol%O2 environment. Corros. Sci. 2023, 220, 111294. [Google Scholar] [CrossRef]
- Zhao, Y.J.; Chen, P.L.; Wen, W.Y.; Deng, Y.J.; Peng, K.W.; Liu, Y.F. Effect of Mn content on the high-temperature oxidation behaviors of Mn-substituted-for-Ni alumina-forming austenitic stainless steel. J. Mater. Res. Technol. 2023, 26, 7816–7828. [Google Scholar] [CrossRef]
- Rodriguez, M.; Leonardi, S.A.; Hanon, F.; Miró, E.E.; Milt, V.G.; Gaigneaux, E.M. Plasma-assisted deposition of Mn and Fe phases on CeO2 biomorphic fibers for soot combustion and CO oxidation. Catal. Today 2023, in press. [Google Scholar] [CrossRef]
- Zhao, W.X.; Jiang, S.H.; Liu, W.H.; Peng, X.Y.; Wang, H.; Wu, Y.; Liu, X.J.; Lu, Z.P. Synergistic effects of microalloying and pre-straining on enhanced nanoprecipitation and creep property of alumina-forming austenitic stainless steels. Mater. Sci. Eng. A 2022, 857, 143995. [Google Scholar] [CrossRef]
- Clain, F.M.; Guilherme CE, M.; Cardoso, F.B.; Cardoso, F.B.; Machado, F.M.; Camaratta, R.; Bergmann, C.P.; Osorio, A.G. Creep and electrical properties of carbon nanotube yarns for long-term applications. Carbon Trends 2023, 13, 100313. [Google Scholar] [CrossRef]
Sample Name | Fe | Cr | Mn | Ni | Cu | Al | Nb | C | B | N |
---|---|---|---|---|---|---|---|---|---|---|
HC-1 | 63.3 | 14 | 4.7 | 12 | 2.9 | 2.4 | 0.6 | 0.1 | 0.001 | 0.001 |
HC-2 | 63.1 | 14 | 4.7 | 12 | 3 | 2.5 | 0.6 | 0.089 | 0.007 | 0.002 |
HC-3 | 60.5 | 14 | 9.3 | 10.1 | 2.9 | 2.4 | 0.6 | 0.1 | 0.013 | 0.001 |
HC-4 | 58.2 | 14.2 | 13.6 | 8.2 | 3 | 2.4 | 0.4 | 0.14 | 0.015 | 0.008 |
Element Name | D0/cm2∙s−1 | Q/kJ∙mol−1 | Element Name | D0/cm2∙s−1 | Q/kJ∙mol−1 |
---|---|---|---|---|---|
C | 0.738 | 159 | Cr | 4.08 | 286.8 |
N | 0.043 | 123 | Cu | 4.16 | 306.2 |
B | 0.002 | 87.9 | Mn | 0.16 | 261.7 |
Fe | 1.05 | 283.9 | Ni | 1.09 | 296.8 |
Co | 1.25 | 305.2 | V | 800.01 | 330.3 |
W | 1000 | 376.8 | Mo | 0.036 | 239.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, G.; Du, S.; Zhou, Z. The Effect of Replacing Ni with Mn on the Microstructure and Properties of Al2O3-Forming Austenitic Stainless Steels: A Review. Materials 2024, 17, 19. https://doi.org/10.3390/ma17010019
Chen G, Du S, Zhou Z. The Effect of Replacing Ni with Mn on the Microstructure and Properties of Al2O3-Forming Austenitic Stainless Steels: A Review. Materials. 2024; 17(1):19. https://doi.org/10.3390/ma17010019
Chicago/Turabian StyleChen, Guoshuai, Shang Du, and Zhangjian Zhou. 2024. "The Effect of Replacing Ni with Mn on the Microstructure and Properties of Al2O3-Forming Austenitic Stainless Steels: A Review" Materials 17, no. 1: 19. https://doi.org/10.3390/ma17010019
APA StyleChen, G., Du, S., & Zhou, Z. (2024). The Effect of Replacing Ni with Mn on the Microstructure and Properties of Al2O3-Forming Austenitic Stainless Steels: A Review. Materials, 17(1), 19. https://doi.org/10.3390/ma17010019