Numerical, Theoretical, and Experimental Analysis of LVL-CFRP Sandwich Structure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Laminated Veneer Lumber
Parameter | Value |
---|---|
Bending strength (edgewise condition) fm,0,edge [MPa] | 44 (80 1) |
Bending strength (flatwise condition) fm,0,flat [MPa] | 50 (78 1) |
Modulus of elasticity in bending (parallel to grain) E0,mean [GPa] | 14 (14.2 1) |
Tension strength (parallel to the grain) ft,0,k [MPa] | 36 |
Compression strength (parallel to the grain) fc,0,k [MPa] | 40 (58.5 1) |
Compression strength (perpendicular to grain) fc,90,k [MPa] | 7.5 (9.5 1) |
Mean value of density ρd [kg/m3] | 550 (600 1) |
Average moisture content of tested samples w [%] | 13.3 1 |
2.1.2. Carbon Fiber Reinforced Polymer (CFRP) Sheet
Parameter | Value |
---|---|
Modulus of elasticity Ef [GPa] | 265 |
Tensile strength ft,f [MPa] | 5100 |
Density ρf [kg/m3] | 1800 |
Elongation at rupture εf [%] | 1.7–1.9 |
Design thickness tf [mm] | 0.333—one layer; 0.666—two layers |
2.1.3. Adhesive (Epoxy Resin)
2.2. Methods
- LER (Laminated Edgewise Reference)—unreinforced beams bent in an edgewise condition;
- LESC1 (Laminated Edgewise Strengthened Carbon-1-layer)—beams reinforced with one layer of CFRP sheet bonded to the sides of the core parallel to the load direction;
- LESC2 (Laminated Edgewise Strengthened Carbon-2-layers)—beams reinforced with two layers of CFRP sheet bonded to the sides of the core parallel to the load direction;
- LFR (Laminated Flatwise Reference)—unreinforced beams bent in a flatwise condition;
- LFSC1 (Laminated Flatwise Strengthened Carbon-1-layer)—beams reinforced with one layer of CFRP sheet bonded to the upper and lower surface of the core perpendicular to the load direction;
- LFSC2 (Laminated Flatwise Strengthened Carbon-2-layers)—beams reinforced with two layers of CFRP sheet bonded to the upper and lower surface of the core perpendicular to the load direction.
3. Results and Analyses
3.1. Load-Bearing Capacity
3.2. Bending Stiffness
3.3. Failure Modes
3.4. Numerical Analysis
3.5. Mathematical Model
4. Conclusions
- The presented novel sandwich structure is characterized by significantly better mechanical properties than the core alone and can be competitive against traditional elements. Further tests, however, are required in order to evaluate the scale effect with different core sizes. From an economical point of view, we propose incorporating cheaper FRP materials like aramid, basalt, and glass sheet and evaluating their influence on the mechanical properties of sandwich structures.
- The greatest load-bearing capacity was achieved when the reinforcement was placed on the sides of the core, parallel to the veneer layers in the core, and in the direction of the applied load, which led to the highest utilization of core strength. The greatest bending stiffness was achieved by placing reinforcement on the extremely compressed and tensile surfaces, i.e., when the center of gravity of the reinforcement was as far away as possible from the center of gravity of the core.
- In experimental tests, only external reinforcement was analyzed. For such configuration, the influence of elevated temperatures and post-fire mechanical properties as well as long-term behavior in various environmental conditions should be considered in future tests.
- The failure of the core alone results from cracking in the tensile zone. The failure of the sandwich structure results from shearing or compression of the core, or rupture of the external layer. Investigation of the possible ways of preventing the most common shear failure mode occurring in flatwise conditions is needed.
- The weakest element in the CFRP-LVL sandwich structure is the core made of laminated veneer; therefore, its arrangement concerning the direction of the applied force should be considered during the design stage of structural elements. No premature failure, due to the failure of connection, was recorded, and a high-quality bond was obtained with the use of epoxy resin.
- The possibility of using a numerical analysis and simple mathematical model to evaluate beam stiffness has been confirmed. However, the applicability of a mathematical model for estimating bending strength is limited to situations where destruction is not caused by shearing.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Roudbeneh, F.H.; Liaghat, G.; Sabouri, H.; Hadavinia, H. High-velocity impact loading in honeycomb sandwich panels reinforced with polymer foam: A numerical approach study. Iran. Polym. J. 2020, 29, 707–721. [Google Scholar] [CrossRef]
- Li, S.; Wang, Z.; Wu, G.; Zhao, L.; Li, X. Dynamic response of sandwich spherical shell with graded metallic foam cores subjected to blast loading. Compos. Part A Appl. Sci. Manuf. 2014, 56, 262–271. [Google Scholar] [CrossRef]
- Zhang, Y.; Yan, L.; Zhang, C.; Guo, S. Low-velocity impact response of tube-reinforced honeycomb sandwich structure. Thin-Walled Struct. 2021, 158, 107188. [Google Scholar] [CrossRef]
- Luo, Y.; Fan, H. Energy absorbing ability of rectangular self-similar multi-cell sandwich-walled tubular structures. Thin-Walled Struct. 2018, 124, 88–97. [Google Scholar] [CrossRef]
- Liu, T.; Hou, S.; Nguyen, X.; Han, X. Energy absorption characteristics of sandwich structures with composite sheets and bio coconut core. Compos. Part B Eng. 2017, 114, 328–338. [Google Scholar] [CrossRef]
- Anjang, A.; Chevali, V.; Lattimer, B.; Case, S.; Feih, S.; Mouritz, A. Post-fire mechanical properties of sandwich composite structures. Compos. Struct. 2015, 132, 1019–1028. [Google Scholar] [CrossRef]
- Goodrich, T.; Nawaz, N.; Feih, S.; Lattimer, B.Y.; Mouritz, A.P. High-temperature mechanical properties and thermal recovery of balsa wood. J. Wood Sci. 2010, 56, 437–443. [Google Scholar] [CrossRef]
- Monti, A.; El Mahi, A.; Jendli, Z.; Guillaumat, L. Quasi-static and fatigue properties of a balsa cored sandwich structure with thermoplastic skins reinforced by flax fibres. J. Sandw. Struct. Mater. 2019, 21, 2358–2381. [Google Scholar] [CrossRef]
- Basha, M.; Wagih, A.; Melaibari, A.; Lubineau, G.; Abdraboh, A.; Eltaher, M. Impact and post-impact response of lightweight CFRP/wood sandwich composites. Compos. Struct. 2022, 279, 114766. [Google Scholar] [CrossRef]
- Galos, J.; Das, R.; Sutcliffe, M.P.; Mouritz, A.P. Review of balsa core sandwich composite structures. Mater. Des. 2022, 221, 111013. [Google Scholar] [CrossRef]
- Kausar, A.; Ahmad, I.; Rakha, S.A.; Eisa, M.H.; Diallo, A. State-of-the-Art of Sandwich Composite Structures: Manufacturing—to—High Performance Applications. J. Compos. Sci. 2023, 7, 102. [Google Scholar] [CrossRef]
- Borri, A.; Corradi, M. Strengthening of timber beams with high strength steel cords. Compos. B Eng. 2011, 42, 1480–1491. [Google Scholar] [CrossRef]
- Theakston, F.H. A feasibility study for strengthening timber beams with fiberglass. Can. Agric. Eng. 1965, 7, 17–19. [Google Scholar]
- Bakalarz, M.; Kossakowski, P. Mechanical Properties of Laminated Veneer Lumber Beams Strengthened with CFRP Sheets. Arch. Civ. Eng. 2019, 65, 57–66. [Google Scholar] [CrossRef]
- Bakalarz, M.M.; Kossakowski, P.G. Strengthening of Full-Scale Laminated Veneer Lumber Beams with CFRP Sheets. Materials 2022, 15, 6526. [Google Scholar] [CrossRef]
- Sokolovic, N.; Gavrilović-Grmuša, I.; Zdravkovic, V.; Ivanovic-Sekularac, J.; Pavićević, D.; Šekularac, N. Flexural Properties in Edgewise Bending of LVL Reinforced with Woven Carbon Fibers. Materials 2023, 16, 3346. [Google Scholar] [CrossRef]
- Percin, O.; Uzun, O. Properties of Heat-Treated Beech Laminated Veneer Lumber Reinforced with Carbon Fiber Fabric. BioResources 2023, 18, 4739–4753. [Google Scholar] [CrossRef]
- Núñez-Decap, M.N.; Sandoval-Valderrama, B.; Opazo-Carlsson, C.; Moya-Rojas, B.; Vidal-Vega, M.; Opazo-Vega, A. Use of Carbon and Basalt Fibers with Adhesives to Improve Physical and Mechanical Properties of Laminated Veneer Lumber. Appl. Sci. 2023, 13, 10032. [Google Scholar] [CrossRef]
- Novosel, A.; Sedlar, T.; Čizmar, D.; Turkulin, H.; Živković, V. Structural reinforcement of bi-directional oak-wood lamination by carbon fibre implants. Constr. Build. Mater. 2021, 287, 123073. [Google Scholar] [CrossRef]
- Sokołowski, P.; Kossakowki, P. Static Analysis of Wooden Beams Strengthened with FRCM-PBO Composite in Bending. Materials 2023, 16, 1870. [Google Scholar] [CrossRef]
- Huang, S.; Yan, L.; Kasal, B. Flexural behaviour of wood beams strengthened by flax-glass hybrid FRP subjected to hygrothermal and weathering exposures. Constr. Build. Mater. 2023, 365, 130076. [Google Scholar] [CrossRef]
- Strzelecka, J.; Polus, Ł.; Chybiński, M. Theoretical and Numerical Analyses of Steel-timber Composite Beams with LVL Slabs. Civ. Environ. Eng. Rep. 2023, 33, 64–84. [Google Scholar] [CrossRef]
- Kawecki, B.; Pieńko, M.; Lipecki, T. Badania eksperymentalne spalania belek z kompozytu drewno-CFRP w skali rzeczywistej (Experimental tests on combustion of wood-CFRP composite beams in a full scale). Mater. Bud. 2023, 7, 29–32. [Google Scholar] [CrossRef]
- PN-EN 408+A1:2012; Timber Structures. Structural Timber and Glued Laminated Timber. Determination of Some Physical and Mechanical Properties. PKN: Warszawa, Poland, 2012.
- PN-EN 14374:2005; Timber Structures. Structural Laminated Veneer Lumber (LVL). Requirements. PKN: Warszawa, Poland, 2005.
- STEICO. STEICO LVL R—Fornir Klejony Warstwowo. Available online: https://www.steico.com/pl/produkty/produkty-konstrukcyjne/fornir-klejony-warstwowo-lvl/steico-lvl-r-fornir-klejony-warstwowo (accessed on 27 October 2023).
- Bakalarz, M. Load bearing capacity of laminated veneer lumber beams strengthened with CFRP strips. Arch. Civ. Eng. 2021, 67, 139–155. [Google Scholar] [CrossRef]
- Bakalarz, M. Efektywność Wzmacniania Zginanych Belek z Drewna Klejonego Warstwowo z Fornirów za Pomocą Komozytów Włóknistych (Effectiveness of Strengthening of Bent Laminated Veneer Lumber Beams with Fibrous Composites). Ph.D. Dissertation, Kielce University of Technology, Kielce, Poland, 2022. [Google Scholar]
- Łapka, M. Wpływ Efektu Skali na Mechanikę Zniszczenia Drewna Konstrukcyjnego. Ph.D. Dissertation, Opole University of Technology, Opole, Poland, 2013. [Google Scholar]
- S&P C-Sheet 240—Technical Information. Available online: https://www.sp-reinforcement.pl/sites/default/files/field_product_col_doc_file/c-sheet_240_polska_ver20190627.pdf (accessed on 19 September 2022).
- S&P Resin 55 HP–Technical Information. Available online: https://www.sp-reinforcement.pl/sites/default/files/field_product_col_doc_file/resin55_hp_polska_ver20190523.pdf (accessed on 19 September 2022).
- PN-EN 196-1; Metody Badania Cement. Część 1: Oznaczanie Wytrzymałości. Polski Komitet Normalizacyjny: Warszawa, Poland, 1999.
- EN 13412:2008; Products and Systems for the Protection and Repair of Concrete Structures. Test Methods. Determination of Modulus of Elasticity in Compression. Polish Committee for Standardization: Warsaw, Poland, 2008.
- EN 12190:1999; Products and Systems for the Protection and Repair of Concrete Structures. Test Methods. Determination of Compressive Strength of Repair Mortar. British Standards Institution: London, UK, 1999.
- Bakalarz, M.M.; Kossakowski, P. Ductility and Stiffness of Laminated Veneer Lumber Beams Strengthened with Fibrous Composites. Fibers 2022, 10, 21. [Google Scholar] [CrossRef]
- Bakalarz, M.M.; Tworzewski, P.P. Application of Digital Image Correlation to Evaluate Strain, Stiffness and Ductility of Full-Scale LVL Beams Strengthened by CFRP. Materials 2023, 16, 1309. [Google Scholar] [CrossRef]
- Raftery, G.M.; Harte, A.M. Repair of glulam beams using GFRP rods. In Proceedings of the 11th International Conference on Structural Repairs and Maintenance of Heritage Architecture (STREMAH 2009), Tallinn, Estonia, 22–24 July 2009. [Google Scholar] [CrossRef]
- Andor, K.; Lengyel, A.; Polgár, R.; Fodor, T.; Karácsonyi, Z. Experimental and statistical analysis of spruce timber beams reinforced with CFRP fabric. Constr. Build. Mater. 2015, 99, 200–207. [Google Scholar] [CrossRef]
- Speranzini, E.; Agnetti, S. Structural performance of natural fibers reinforced timber beams. In Proceedings of the 6th International Conference on FRP Composites in Civil Engineering (CICE 2012), Rome, Italy, 13–15 June 2012. [Google Scholar]
- Kawecki, B. Dobór Parametrów Modeli Obliczeniowych Pełnych Dźwigarów z Kompozytów Drewno-Polimerowych Zbrojonych Włóknami. Ph.D. Dissertation, Lublin University of Technology, Lublin, Poland, 2021. [Google Scholar]
- Szczecina, M. Study of Complexity of Numerical Models of a Strengthened Timber Beam. Materials 2023, 16, 3466. [Google Scholar] [CrossRef]
- Bakalarz, M.M.; Kossakowski, P.G. Application of transformed cross section method for analytical analysis of laminated veneer lumber beams strengthened with composite materials. Fibers 2023, 11, 24. [Google Scholar] [CrossRef]
- Rudziński, L. Konstrukcje Drewniane—Naprawy, Wzmocnienia, Przykłady Obliczeń; Wydawnictwo Politechniki Świętokrzyskiej: Kielce, Poland, 2010. [Google Scholar]
- Masłowski, E.; Spiżewska, D. Wzmacnianie Konstrukcji Budowlanych; Wydawnictwo Arkady: Warszawa, Poland, 2000. [Google Scholar]
- Timbolmas, C.; Bravo, R.; Rescalvo, F.J.; Gallego, A. Development of analytical model to predict the bending behavior of composite glulam beams in tension and compression. J. Build. Eng. 2022, 45, 103471. [Google Scholar] [CrossRef]
- Nadir, Y.; Nagarajan, P.; Ameen, M.; Arif, M. Flexural stiffness and strength engancement of horizontally glued laminated wood beams with GFRP and CFRP composite sheets. Constr. Build. Mater. 2016, 112, 547–555. [Google Scholar] [CrossRef]
- Basterra, L.A.; Balmori, J.A.; Morillas, L.; Acuna, L.; Casado, M. Internal reinforcement of laminated duo beams of low-grade imber with GFRP sheets. Constr. Build. Mater. 2017, 154, 914–920. [Google Scholar] [CrossRef]
- Soriano, J.; Pellis, B.P.; Mascia, N.T. Mechanical performance of glued-laminated timber beams symmetrically reinforced with steel bars. Compos. Struct. 2016, 150, 200–207. [Google Scholar] [CrossRef]
- Corradi, M.; Borri, A. Fir and chestnut timber beams reinforced with GFRP pultruded elements. Compos. B Eng. 2007, 38, 172–181. [Google Scholar] [CrossRef]
- Fiorelli, J.; Dias, A.A. Analysis of the Strength and Stiffness of Timber Beams Reinforced with Carbon Fiber and Glass Fiber. Mater. Res. 2003, 6, 193–202. [Google Scholar] [CrossRef]
- CNR-DT 201/2005; Guidelines for the Design and Construcion of Externally Bonded FRP Systems for Strengthening Existing Structures. Timber Structures. CNR: Rome, Italy, 2007.
Parameter | Value |
---|---|
Bending strength fm [MPa] | 85.3 1 |
Modulus of elasticity Ek [MPa] | 3200 |
Density ρk [kg/m3] | 1200–1300 (1150 1) |
Compressive strength fc,k [MPa] | 100 |
Parameter | Beam | Mean Value | |||||
---|---|---|---|---|---|---|---|
LER1 | LER2 | LER3 | LER4 | LER5 | LER6 | ||
Fmax [kN] | 9.19 | 9.68 | 9.20 | 8.67 | 9.86 | 8.94 | 9.26 |
Mmax [kN] | 1.22 | 1.28 | 1.22 | 1.15 | 1.31 | 1.19 | 1.23 |
umax [mm] | 17.5 | 25.8 | 20.8 | 15.8 | 23.0 | 23.2 | 21.0 |
Failure mode | Tension | Tension | Tension | Tension | Tension | Tension | - |
Parameter | Beam | Mean Value | |||||
---|---|---|---|---|---|---|---|
LESC1-1 | LESC1-2 | LESC1-3 1 | LESC1-4 | LESC1-5 | LESC1-6 | ||
Fmax [kN] | 12.17 | 12.33 | 7.38 | 12.27 | 13.59 | 11.40 | 12.35 |
Mmax [kN] | 1.61 | 1.63 | 0.98 | 1.63 | 1.80 | 1.51 | 1.64 |
umax [mm] | 19.1 | 22.2 | 14.7 | 25.8 | 25.2 | 21.0 | 22.7 |
Failure mode | Tension + Compression + Rupture of composite | Tension + Compression + Rupture of composite | Tension + Rupture of composite | Tension + Rupture of composite | Tension + Compression + Rupture of composite | Tension + Compression + Rupture of composite | - |
Parameter | Beam | Mean Value | |||||
---|---|---|---|---|---|---|---|
LESC2-1 | LESC2-2 | LESC2-3 | LESC2-4 | LESC2-5 | LESC2-6 | ||
Fmax [kN] | 14.45 | 14.17 | 14.75 | 15.24 | 13.06 | 15.41 | 14.51 |
Mmax [kN] | 1.92 | 1.88 | 1.95 | 2.02 | 1.73 | 2.04 | 1.92 |
umax [mm] | 24.5 | 22.1 | 20.2 | 27.0 | 22.7 | 25.0 | 23.6 |
Failure mode | Tension + Compression + Rupture of composite | Tension + Compression + Rupture of composite | Tension + Compression + Rupture of composite | Tension + Rupture of composite | Tension + Compression + Rupture of composite | Tension + Rupture of composite | - |
Parameter | Beam | Mean Value | |||||
---|---|---|---|---|---|---|---|
LFR1 | LFR2 | LFR3 | LFR4 | LFR5 | LFR6 | ||
Fmax [kN] | 9.92 | 7.97 | 9.05 | 9.12 | 7.96 | 9.32 | 8.89 |
Mmax [kN] | 1.32 | 1.06 | 1.20 | 1.21 | 1.05 | 1.23 | 1.18 |
umax [mm] | 25.6 | 19.5 | 26.4 | 26.3 | 23.5 | 21.9 | 23.9 |
Failure mode | Tension | Tension | Shear | Tension | Tension | Tension | - |
Parameter | Beam | Mean Value | |||||
---|---|---|---|---|---|---|---|
LFSC1-1 1 | LFSC1-2 1 | LFSC1-3 | LFSC1-4 | LFSC1-5 | LFSC1-6 | ||
Fmax [kN] | - | - | 9.32 | 11.52 | 13.37 | 9.43 | 10.91 |
Mmax [kN] | - | - | 1.24 | 1.53 | 1.77 | 1.25 | 1.45 |
umax [mm] | - | - | 17.5 | 11.3 | 19.6 | 11.8 | 15.0 |
Failure mode | Shear | Shear | Shear + Rupture of composite | Shear | Shear | Shear | - |
Parameter | Beam | Mean Value | |||||
---|---|---|---|---|---|---|---|
LFSC2-1 | LFSC2-2 | LFSC2-3 | LFSC2-4 | LFSC2-5 | LFSC2-6 | ||
Fmax [kN] | 12.37 | 13.40 | 12.75 | 11.71 | 14.85 | 12.90 | 13.00 |
Mmax [kN] | 1.64 | 1.78 | 1.69 | 1.55 | 1.97 | 1.71 | 1.72 |
umax [mm] | 14.3 | 14.3 | 12.5 | 12.3 | 18.4 | 12.5 | 14.1 |
Failure mode | Shear | Shear | Shear | Shear | Shear | Shear | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bakalarz, M.M.; Kossakowski, P.G. Numerical, Theoretical, and Experimental Analysis of LVL-CFRP Sandwich Structure. Materials 2024, 17, 61. https://doi.org/10.3390/ma17010061
Bakalarz MM, Kossakowski PG. Numerical, Theoretical, and Experimental Analysis of LVL-CFRP Sandwich Structure. Materials. 2024; 17(1):61. https://doi.org/10.3390/ma17010061
Chicago/Turabian StyleBakalarz, Michał Marcin, and Paweł Grzegorz Kossakowski. 2024. "Numerical, Theoretical, and Experimental Analysis of LVL-CFRP Sandwich Structure" Materials 17, no. 1: 61. https://doi.org/10.3390/ma17010061
APA StyleBakalarz, M. M., & Kossakowski, P. G. (2024). Numerical, Theoretical, and Experimental Analysis of LVL-CFRP Sandwich Structure. Materials, 17(1), 61. https://doi.org/10.3390/ma17010061