Dynamic Marine Atmospheric Corrosion Behavior of AZ91 Mg Alloy Sailing from Yellow Sea to Western Pacific Ocean
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Preparation
2.2. Atmospheric Exposure Experiment
2.3. Environmental Factors Measurements
2.4. Characterization and Analysis of the Exposed Samples
3. Results and Discussion
3.1. Initial Microstructure of AZ91 Mg Alloy
3.2. Corrosion Morphologies of AZ91 Mg Alloys Exposed to Dynamic Marine Atmosphere
3.3. Corrosion Products Analysis
3.4. Corrosion Rate of AZ91 Mg Alloy Exposed to Dynamic Marine Atmosphere for Different Durations
3.5. Corrosion Mechanism of AZ91 Mg Alloy in Dynamic Marine Atmospheric
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, J.; Cui, X.; Zhao, W.; Chi, C.; Cao, X.; Lin, P. The tensile deformation behavior of AZ31B magnesium alloy sheet under intermittent pulse current. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 2022, 236, 471–480. [Google Scholar] [CrossRef]
- Sheng, Y.; Hou, R.; Liu, C.; Xue, Z.; Zhang, K.; Li, J.; Guan, S. Tailoring of Biodegradable Magnesium Alloy Surface with Schiff Base Coating via Electrostatic Spraying for Better Corrosion Resistance. Metals 2022, 12, 471. [Google Scholar] [CrossRef]
- Xiong, Y.; Yu, Y.; Yang, J. Fatigue behavior after pre-corroded in a simulated body fluid for ZK60 magnesium alloy prepared by micro-arcoxidation. Fatigue Fract. Eng. Mater. Struct. 2022, 45, 239–258. [Google Scholar] [CrossRef]
- Wang, D.; Pei, S.; Wang, Y.; Ma, K.; Dai, C.; Wang, J.; Wang, J.; Pan, F. Effect of magnesium-to-phosphate ratio on the corrosion resistance of magnesium alloy embedded in magnesium potassium phosphate cement. Cem. Concr. Compos. 2023, 135, 104826. [Google Scholar] [CrossRef]
- Lv, X.; Deng, K.; Wang, C.; Nie, K.; Shi, Q.; Liang, W. The corrosion properties of AZ91 alloy improved by the addition of trace submicron SiCp. Mater. Chem. Phys. 2022, 286, 126143. [Google Scholar] [CrossRef]
- Yang, L.; Lin, C.; Gao, H.; Xu, W.; Li, Y.; Hou, B.; Huang, Y. Corrosion Behaviour of AZ63 Magnesium Alloy in Natural Seawater and 3.5 wt.% NaCl Aqueous Solution. Int. J. Electrochem. Sci. 2018, 13, 8084–8093. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Zhang, J.; Zhang, R.; Wang, M.; Sand, W.; Duan, J.; Zhu, Q.; Zhai, S.; Hou, B. Effects of Inorganic Metabolites of Sulphate-Reducing Bacteria on the Corrosion of AZ31B and AZ63B Magnesium Alloy in 3.5 wt.% NaCl Solution. Materials 2022, 15, 2212. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, T.; Wang, F. Unveiling the effect of Al–Mn intermetallic on the micro-galvanic corrosion of AM50 Mg alloy in NaCl solution. J. Mater. Res. Technol. 2023, 26, 753–763. [Google Scholar] [CrossRef]
- Zhao, T.; Wang, Z.; Feng, Y.; Li, Q. Synergistic corrosion inhibition of sodium phosphate and sodium dodecyl sulphate on magnesium alloy AZ91 in 3.5 wt.% NaCl solution. Mater. Today Commun. 2022, 31, 103568. [Google Scholar] [CrossRef]
- Walton, C.; Martin, H.; Horstemeyer, M.; Wang, P. Quantification of corrosion mechanisms under immersion and salt-spray environments on an extruded AZ31 magnesium alloy. Corros. Sci. 2012, 56, 194–208. [Google Scholar] [CrossRef]
- Song, W.; Martin, H.; Hicks, A.; Seely, D.; Walton, C.; Lawrimore, W.; Wang, P.; Horstemeyer, M. Corrosion behaviour of extruded AM30 magnesium alloy under salt-spray and immersion environments. Corros. Sci. 2014, 78, 353–368. [Google Scholar] [CrossRef]
- Liao, J.; Hotta, M.; Motoda, S.; Shinohara, T. Atmospheric corrosion of two field-exposed AZ31B magnesium alloys with different grain size. Corros. Sci. 2013, 71, 53–61. [Google Scholar] [CrossRef]
- Man, C.; Dong, C.; Wang, L.; Kong, D.; Li, X. Long-term corrosion kinetics and mechanism of magnesium alloy AZ31 exposed to a dry tropical desert environment. Corros. Sci. 2020, 163, 108274. [Google Scholar] [CrossRef]
- Jönsson, M.; Persson, D.; Leygraf, C. Atmospheric corrosion of field-exposed magnesium alloy AZ91D. Corros. Sci. 2008, 50, 1406–1413. [Google Scholar] [CrossRef]
- Yu, R.; Cao, F.; Zhao, C.; Yao, J.; Wang, J.; Wang, Z.; Zou, Z.; Zheng, D.; Cai, J.; Song, G. The marine atmospheric corrosion of pure Mg and Mg alloys in field exposure and lab simulation. Corros. Eng. Sci. Technol. 2020, 55, 609–621. [Google Scholar] [CrossRef]
- Jiang, Q.; Zhang, K.; Li, X.; Li, Y.; Ma, M.; Shi, G.; Yuan, J. Atmospheric corrosion of Mg-rare earth alloy in typical inland and marine environments. Corros. Eng. Sci. Technol. 2014, 49, 651–655. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, W.; Wang, X.; Jiang, Q.; Li, Y.; Huang, Y.; Yang, L. Research on Dynamic Marine Atmospheric Corrosion Behavior of AZ31 Magnesium Alloy. Metals 2022, 12, 1886. [Google Scholar] [CrossRef]
- Jiang, Q.; Lu, D.; Cheng, L.; Liu, N.; Hou, B. The corrosion characteristic and mechanism of Mg-5Y-1.5Nd-xZn-0.5Zr (x = 0, 2, 4, 6 wt.%) alloys in marine atmospheric environment. J. Magnes. Alloy. 2024, 12, 139–158. [Google Scholar] [CrossRef]
- Cui, Z.; Li, X.; Xiao, K.; Dong, C. Atmospheric corrosion of field-exposed AZ31 magnesium in a tropical marine environment. Corros. Sci. 2013, 76, 243–256. [Google Scholar] [CrossRef]
- Song, Y.; Dai, J.; Sun, S. A comparative study on the corrosion behavior of AZ80 and EW75 Mg alloys in industrial atmospheric environment. Mater. Today Commun. 2024, 38, 108263. [Google Scholar] [CrossRef]
- GJB 8894.1-2017; Determination Method for for Natural Factors—Part 1: Atmospheric Environmental Factors. Equipment Development Department of Central Military Commission: Beijing, China, 2017.
- Grimm, M.; Lohmüller, A.; Singer, R.; Virtanen, S. Influence of the microstructure on the corrosion behaviour of cast Mg-Al alloys. Corros. Sci. 2019, 155, 195–208. [Google Scholar] [CrossRef]
- Kim, J.; Byeon, J. Quantitative relation of discontinuous and continuous Mg17Al12 precipitates with corrosion rate of AZ91D magnesium alloy. Mater. Charact. 2021, 174, 111015. [Google Scholar] [CrossRef]
- Lin, C.; Li, X.G. Role of CO2 in the initial stage of atmospheric corrosion of AZ91 magnesium alloy in the presence of NaCl. Rare Met. 2006, 25, 190–196. [Google Scholar] [CrossRef]
- Yu, L.; Jia, P.; Zhao, B.; Song, Y.; Wang, J.; Cui, H.; Feng, R.; Li, H.; Cui, X.; Gao, Z.; et al. Effect of CO2 on the microstructure and corrosion mechanism of Mg-Nd-Zn-Ca plasma electrolytic oxidation coatings. Mater. Today Commun. 2023, 34, 105081. [Google Scholar] [CrossRef]
- Liao, J.; Hotta, M. Atmospheric corrosion behavior of field-exposed magnesium alloys: Influences of chemical composition and microstructure. Corros. Sci. 2015, 100, 353–364. [Google Scholar] [CrossRef]
- Lojka, M.; Jiříčková, A.; Lauermannová, A.; Pavlíková, M.; Pavlík, Z.; Jankovský, O. Kinetics of formation and thermal stability of Mg2(OH)3Cl·4H2O. AIP Conf. Proc. 2019, 2170, 020009. [Google Scholar]
- Felten, M.; Nowak, J.; Beyss, O.; Grünewald, P.; Motz, C.; Zander, D. The effect of time dependent native oxide surface conditions on the electrochemical corrosion resistance of Mg and Mg-Al-Ca alloys. Corros. Sci. 2023, 212, 110925. [Google Scholar] [CrossRef]
- Zhang, Y.; Chen, X.; Zhang, S.; Ding, X.; Liu, B. In-situ formation Mg(OH)2-ZrO2 coating on AZ61 magnesium alloy for corrosion protection. Mater. Lett. 2024, 358, 135854. [Google Scholar] [CrossRef]
- Pacheco, M.; Aroso, I.; Silva, J.; Lamaka, S.; Bohlen, J.; Nienaber, M.; Letzig, D.; Lima, S.; Barros, A.; Reis, R. Understanding the corrosion of Mg alloys in in vitro urinary tract conditions: A step forward towards a biodegradable metallic ureteral stent. J. Magnes. Alloys 2023, 11, 4301–4324. [Google Scholar] [CrossRef]
- Li, Y.; Wu, Z.; Wei, J.; Wu, P.; Zhang, Y.; Wu, H.; Liang, S.; Yong, H.; Song, G.; Fang, D.; et al. Enhanced corrosion resistance of Mg17Al12 compounds by Ce modification. Vacuum 2023, 218, 112663. [Google Scholar] [CrossRef]
- Esmaily, M.; Shahabi-Navid, M.; Svensson, J.; Halvarsson, M.; Nyborg, L.; Cao, Y.; Johansson, L. Influence of temperature on the atmospheric corrosion of the Mg-Al alloy AM50. Corros. Sci. 2015, 90, 420–433. [Google Scholar] [CrossRef]
- Song, G.; Atrens, A. Recently deepened insights regarding Mg corrosion and advanced engineering applications of Mg alloys. J. Magnes. Alloys 2023, 11, 3948–3991. [Google Scholar] [CrossRef]
Material | Al | Zn | Mn | Si | Fe | Cu | Ni | Mg |
---|---|---|---|---|---|---|---|---|
AZ91 | 8.93 | 0.68 | 0.25 | 0.02 | 0.003 | 0.003 | 0.0006 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Liu, C.; Wang, Y.; Wang, X.; Gao, H. Dynamic Marine Atmospheric Corrosion Behavior of AZ91 Mg Alloy Sailing from Yellow Sea to Western Pacific Ocean. Materials 2024, 17, 2294. https://doi.org/10.3390/ma17102294
Yang L, Liu C, Wang Y, Wang X, Gao H. Dynamic Marine Atmospheric Corrosion Behavior of AZ91 Mg Alloy Sailing from Yellow Sea to Western Pacific Ocean. Materials. 2024; 17(10):2294. https://doi.org/10.3390/ma17102294
Chicago/Turabian StyleYang, Lihui, Cong Liu, Ying Wang, Xiutong Wang, and Haiping Gao. 2024. "Dynamic Marine Atmospheric Corrosion Behavior of AZ91 Mg Alloy Sailing from Yellow Sea to Western Pacific Ocean" Materials 17, no. 10: 2294. https://doi.org/10.3390/ma17102294
APA StyleYang, L., Liu, C., Wang, Y., Wang, X., & Gao, H. (2024). Dynamic Marine Atmospheric Corrosion Behavior of AZ91 Mg Alloy Sailing from Yellow Sea to Western Pacific Ocean. Materials, 17(10), 2294. https://doi.org/10.3390/ma17102294