Study on Shear Performance of Corroded Steel Fiber Reinforced Concrete Beams under Impact Load
Abstract
:1. Introduction
2. Experimental Program
2.1. Materials
2.2. Details of Beam Specimens
3. Accelerated Corrosion and Test Setup
3.1. Corrosion Method
3.2. Impact Test
4. Test Results
4.1. Failure Modes
4.2. Dynamic Responses
4.3. Analysis of Energy Dissipation
5. Conclusions
- From the corrosion test results, SFRC beams with added steel fibers exhibit fewer surface rust spot areas compared to those without steel fibers. This is attributed to the bonding of steel fibers with the concrete matrix and their ability to share part of the corrosion current, resulting in fewer severe rust marks on the concrete surface.
- The impact tests reveal that SFRC beams exhibit concrete crushing at the top without spalling, with flexural and flexure-shear cracks developing at mid-span. Higher steel fiber content correlates with enhanced impact resistance, resulting in fewer cracks. With increased impact loads, a shift towards shear-dominated failure occurs, causing more severe localized damage. High-speed camera analysis confirms that steel fiber inclusion boosts impact resistance by reducing crack spread, enhancing stiffness, modifying failure modes, and mitigating concrete spalling.
- SFRC beams with different steel fiber contents display varied responses to impact loads at drop heights ranging from 1 m to 3 m. Enhanced steel fiber content correlates with improved overall beam performance, as evidenced by higher peak impact load values and distinctive mid-span deflection characteristics. Moreover, a consistent impulse oscillation zone is noted across various drop heights, indicating an enhanced energy dissipation capacity. Stirrup reinforcement strain gradually increases with drop height, while longitudinal strain response is marginally faster, suggesting strain gauge failure under intense impact loads. In summary, integrating steel fibers into SFRC beams enhances their impact resistance and deformation capacity, thereby improving structural performance under impact loading conditions.
- The energy dissipation analysis indicates a moderate increase in energy dissipation with higher steel fiber content. Impulse and average impact force generally increase with higher steel fiber content, although some inconsistency is noted in the 2 m drop hammer tests, possibly due to sensor adherence issues. Nonetheless, the trend indicates that higher steel fiber content enhances impulse and average impact force.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmed, E.R.; Wael, A.; Abathar, A.H.; Sarah, H. Shear performance of basalt fiber-reinforced concrete beams reinforced with BFRP bars. Compos. Struct. 2022, 288, 115443. [Google Scholar] [CrossRef]
- Abdullah, M.J.; Beddu, S.; Manan, T.S.A.; Syamsir, A.; Naganathan, S.; Kamal, N.L.M.; Mohamad, D.; Itam, Z.; Yee, H.M.; Yapandi, M.F.K.M.; et al. The strength and thermal properties of concrete containing water absorptive aggregate from well-graded bottom ash (BA) as partial sand replacement. Constr. Build. Mater. 2022, 339, 127658. [Google Scholar] [CrossRef]
- Biswas, R.K.; Iwanami, M.; Chijiwa, N.; Uno, K. Effect of non-uniform rebar corrosion on structural performance of RC structures: A numerical and experimental investigation. Constr. Build. Mater. 2020, 230, 116908. [Google Scholar] [CrossRef]
- Otieno, M.; Beushausen, H.; Alexander, M. Chloride-induced corrosion of steel in cracked concrete—Part I: Experimental studies under accelerated and natural marine environments. Cem. Concr. Res. 2016, 79, 373–385. [Google Scholar] [CrossRef]
- Almusallam, A.A. Effect of degree of corrosion on the properties of reinforcing steel bars. Constr. Build. Mater. 2001, 15, 361–368. [Google Scholar] [CrossRef]
- Auyeung, S.; Alipour, A.; Saini, D. Performance-based design of bridge piers under vehicle collision. Eng. Struct. 2019, 191, 752–765. [Google Scholar] [CrossRef]
- Hao, H.; Hao, Y.; Li, J.; Chen, W. Review of the current practices in blast-resistant analysis and design of concrete structures. Adv. Struct. Eng. 2016, 19, 1193–1223. [Google Scholar] [CrossRef]
- Oliveira, M.C.; Teles, D.; Amorim, D. Shear behaviour of reinforced concrete beams under impact loads by the Lumped Damage framework. Frat. Ed Integrità Strutt. 2020, 14, 13–25. [Google Scholar] [CrossRef]
- Reba, T.C.; Aure, T. WInfluence of aggregate size on shear mechanism of reinforced concrete beam subjected to impact load. SN Appl. Sci. 2022, 4, 224. [Google Scholar] [CrossRef]
- Remennikov, A.M.; Kaewunruen, S. Impact resistance of reinforced concrete columns: Experimental studies and design considerations. In Progress in Mechanics of Structures and Materials; CRC Press: Boca Raton, FL, USA, 2020; pp. 817–823. Available online: https://ro.uow.edu.au/engpapers/379/ (accessed on 1 January 2020).
- Mindess, S.; Young, J.F.; Darwin, D. Concrete; Prentice-Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Wang, K.; Jansen, D.; Shah, S.; Karr, A. Permeability study of cracked concrete. Cem. Concr. Res. 1997, 27, 381–393. [Google Scholar] [CrossRef]
- Adhikary, S.D.; Li, B.; Fujikake, K. Strength and behavior in shear of reinforced concrete deep beams under dynamic loading conditions. Nucl. Eng. Des. 2013, 259, 14–28. [Google Scholar] [CrossRef]
- Fu, Y.; Yu, X.; Dong, X.; Zhou, F.; Ning, J.; Li, P.; Zheng, Y.X. Investigating the failure behaviors of RC beams without stirrups under impact loading. Int. J. Impact Eng. 2020, 137, 103432. [Google Scholar] [CrossRef]
- Liao, W.Z.; Liu, K.X.; Ma, C.; Liang, J.C. Experimental study on consistency of the impact performance between composite beams and reinforced concrete beams. Compos. Struct. 2023, 308, 116677. [Google Scholar] [CrossRef]
- Huang, Z.; Chen, W.; Tran, T.T.; Pham, T.; Hao, H.; Chen, Z.; Elchalakani, M. Experimental and Numerical Study on Concrete Beams Reinforced with Basalt FRP Bars under Static and Impact Loads. Compos. Struct. 2021, 263, 113648. [Google Scholar] [CrossRef]
- Pham, T.M.; Hao, H. Impact Behavior of FRP-Strengthened RC Beams without Stirrups. J. Compos. Constr. 2016, 20, 04016011. [Google Scholar]
- Saatci, S.; Vecchio, F.J. Effects of shear mechanisms on impact behavior of reinforced concrete beams. ACI Struct. J. 2009, 106, 78–86. [Google Scholar] [CrossRef]
- Fu, C.Q.; Huang, J.; Dong, Z.; Song, C.; Zhang, Y. Shear behavior of reinforced concrete beams subjected to accelerated non-uniform corrosion. Eng. Struct. 2023, 286, 116081. [Google Scholar] [CrossRef]
- Anas, S.M.; Alam, M.; Shariq, M. Damage response of conventionally reinforced two-way spanning concrete slab under eccentric impacting drop weight loading. Def. Technol. 2023, 19, 12–34. [Google Scholar] [CrossRef]
- Chung, L.; Najm, H.; Balaguru, P. Flexural behavior of concrete slabs with corroded bars. Cem. Concr. Compos. 2008, 30, 184–193. [Google Scholar] [CrossRef]
- Francois, R.; Khan, I.; Dang, V.H. Impact of corrosion on mechanical properties of steel embedded in 27-year-old corroded reinforced concrete beams. Mater. Struct. 2013, 46, 899–910. [Google Scholar] [CrossRef]
- Khan, I.; François, R.; Castel, A. Structural performance of a 26-year-old corroded reinforced concrete beam. Eur. J. Environ. Civ. Eng. 2012, 16, 440–449. [Google Scholar] [CrossRef]
- Liao, W.; Li, M.; Zhang, W.; Tian, Z. Experimental studies and numerical simulation of behavior of RC beams retrofitted with HSSWM-HPM under impact loading. Eng. Struct. 2017, 149, 131–146. [Google Scholar] [CrossRef]
- Li, H.; Chen, W.; Hao, H. Factors influencing impact force profile and measurement accuracy in drop weight impact tests. Int. J. Impact Eng. 2020, 145, 103688. [Google Scholar] [CrossRef]
- Zhu, W.; Francois, R. Corrosion of the reinforcement and its influence on the residual structural performance of a 26-year-old corroded RC beam. Constr. Build. Mater. 2014, 51, 461–472. [Google Scholar] [CrossRef]
- Fernandez, I.; Etxeberria, M.; Marí, A.R. Ultimate bond strength assessment of uncorroded and corroded reinforced recycled aggregate concretes. Constr. Build. Mater. 2016, 111, 543–555. [Google Scholar] [CrossRef]
- Al-Sibahy, A.; Sabhan, M. Corrosion effects on the bond behaviour of steel bars in self-compacting concrete. Constr. Build. Mater. 2020, 250, 118568. [Google Scholar] [CrossRef]
- Chen, S.F.; Zheng, M.L.; Wand, B.G. Study of High-Performance Concrete Subjected to Coupled Action from Sodium Sulfate Solution and Alternating Stresses. J. Mater. Civ. Eng. 2009, 21, 148–153. [Google Scholar] [CrossRef]
- Lu, Y.; Tang, W.; Li, S.; Tang, M. Effects of simultaneous fatigue loading and corrosion on the behavior of reinforced beams. Constr. Build. Mater. 2018, 181, 85–93. [Google Scholar] [CrossRef]
- Muda, Z.C.; Usman, F.; Syamsir, A.; Chen, S.Y.; Mustapha, K.N.; Beddu, S.; Thiruchelvam, S.; Kamal, N.L.M.; Alam, M.A.; Birima, A.H.; et al. Effect of Thickness and Fibre Volume Fractionon Impact Resistance of Steel Fibre Reinforced Concrete (SFRC). IOP Conf. Ser. Earth Environ. Sci. 2016, 32, 012026. [Google Scholar] [CrossRef]
- Micallef, K.; Sagaseta, J.; Ruiz, M.F.; Muttoni, A. Assessingpunching shear failure in reinforced concrete flat slabs subjected to localised impact loading. Int. J. Impact Eng. 2014, 71, 17–33. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Huang, J.S.; Zhang, W.; Liu, X. Experimental and numerical study of hooked-end steel fiber-reinforced concrete based on the meso- and macro-models. Compos. Struct. 2023, 309, 116750. [Google Scholar] [CrossRef]
- Kim, J.; Kwon, M.; Seo, H.; Lim, J. Experimental study of torsional strength of RC beams constructed with HPFRC composite mortar. Constr. Build. Mater. 2015, 91, 9–16. [Google Scholar] [CrossRef]
- Martinola, G.; Meda, A.; Plizzari, G.A.; Rinaldi, Z. Strengthening and repair of RC beams with fiber reinforced concrete. Cem. Concr. Compos. 2010, 32, 731–739. [Google Scholar] [CrossRef]
- Qin, F.; Zhang, Z.; Yin, Z.; Di, J.; Xu, L.; Xu, X. Use of high strength, high ductility engineered cementitious composites (ECC) to enhance the flexural performance of reinforced concrete beams. J. Build. Eng. 2020, 32, 101746. [Google Scholar] [CrossRef]
- Tran, D.; Pham, T.M.; Hao, H.; Ha, N.S.; Vo, N.; Chen, W.S. Precast segmental beams made of fiber-reinforced geopolymer concrete and FRP tendons against impact loads. Eng. Struct. 2023, 295, 116862. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, Y.; Yang, Z.; Guo, F.; Shen, L. 3D meso-scale investigation of ultra high-performance fibre reinforced concrete (UHPFRC) using cohesive crack model and Weibull random field. Constr. Build. Mater. 2022, 327, 127013. [Google Scholar] [CrossRef]
- Goldston, M.W.; Remennikov, A.; Saleh, Z.; Sheikh, M.N. Experimental investigations on the behavior of GFRP bar reinforced HSC and UHSC beams under static and impact loading. Structures 2019, 22, 109–123. [Google Scholar] [CrossRef]
- Saleh, Z.; Sheikh, M.N.; Remennikov, A.; Basu, A. Damage assessment of GFRP bar reinforced ultra-high-strength concrete beams under overloading impact conditions. Eng. Struct. 2020, 213, 110581. [Google Scholar] [CrossRef]
- Yu, F.; Fang, Y.; Feng, C.C.; Tan, S.; Wang, Y. Shear capacity of PVC-CFRP confined concrete column-RC beam interior joint strengthened with core steel tube. Thin-Walled Struct. 2023, 193, 111213. [Google Scholar] [CrossRef]
- GB/T 50081-2002; Standard for Test Method of Mechanical Properties on Ordinary Concrete. Ministry of Housing and Urban-Rural Development of the People’s Republic of China: Beijing, China, 2003.
- Stein, K.J.; Graeff, Â.G.; Garcez, M.R. Structural performance of reinforced concrete beams subjected to combined effects of corrosion and cyclic loading. J. Build. Pathol. Rehabil. 2023, 8, 15. [Google Scholar] [CrossRef]
- Badawi, M.; Soudki, K. Control of corrosion-induced damage in reinforced concrete beams using carbon fiber-reinforced polymer laminates. J. Compos. Constr. 2005, 9, 195–201. [Google Scholar] [CrossRef]
- El Maaddawy, T.E.A.; Soudki, K.K.A. Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete. J. Mater. Civ. Eng. 2003, 15, 41–47. [Google Scholar] [CrossRef]
- GB/T 2423.5-2019; Environmental Testing for Electric and Electronic Products—Part 2: Test methods—Test Ea and Guidance: Shock. State Bureau of Technical Supervision: Beijing, China, 2019.
- Dancygier, A.N.; Yankelevsky, D.Z.; Jaegermann, C. Response of high-performance concrete plates to impact of non-deforming projectiles. Int. J. Impact Eng. 2007, 34, 1768–1779. [Google Scholar] [CrossRef]
- Tran, T.T.; Pham, T.M.; Huang, Z.; Chen, W.; Hao, H.; Elchalakani, M. Impact Response of Fibre Reinforced Geopolymer Concrete Beams with BFRP Bars and Stirrups. Eng. Struct. 2020, 231, 111785. [Google Scholar] [CrossRef]
Curing Period (d) | Average Cubic Compressive Strength (MPa) | Axial Compressive Strength (MPa) |
---|---|---|
14 | 32.1 | 24.4 |
21 | 34.2 | 26.0 |
28 | 37.6 | 28.6 |
Type | Steel Fiber Dosage (%) | Curing Period (d) | Average Cubic Compressive Strength (MPa) | Axial Compressive Strength (MPa) |
---|---|---|---|---|
DL-0 | 0 | 28 | 33.00 | 25.08 |
DL-0.25 | 0.25 | 41.85 | 31.81 | |
DL-0.50 | 0.50 | 42.97 | 32.66 | |
DL-0.75 | 0.75 | 45.63 | 34.68 | |
DL-1.00 | 1.0 | 45.27 | 34.41 |
Types | Hammer Mass (kg) | Falling Height (m) | Impact Velocity (m/s) | Corrosion Time (d) | Steel Fibers Content (%) |
---|---|---|---|---|---|
DL-0-1m | 100 | 1 | 4.43 | 48 | 0 |
DL-0-2m | 2 | 6.26 | 0 | ||
DL-0-3m | 3 | 7.67 | 0 | ||
DL-0.25-1m | 1 | 4.43 | 0.25 | ||
DL-0.25-2m | 2 | 6.26 | 0.25 | ||
DL-0.25-3m | 3 | 7.67 | 0.25 | ||
DL-0.5-1m | 1 | 4.43 | 0.5 | ||
DL-0.5-2m | 2 | 6.26 | 0.5 | ||
DL-0.5-3m | 3 | 7.67 | 0.5 | ||
DL-0.75-1m | 1 | 4.43 | 0.75 | ||
DL-0.75-2m | 2 | 6.26 | 0.75 | ||
DL-0.75-3m | 3 | 7.67 | 0.75 | ||
DL-1.0-1m | 1 | 4.43 | 1.0 | ||
DL-1.0-2m | 2 | 6.26 | 1.0 | ||
DL-1.0-3m | 3 | 7.67 | 1.0 |
Type | Steel Fibers Content (%) | Impact Speed (m/s) | Peak Impact Load (kN) | Peak Mid-Span Deflection (mm) | Residual Mid-Span Deflection(mm) |
---|---|---|---|---|---|
DL-0-1m | 0 | 4.43 | 266.92 | 18.16 | 12.34 |
DL-0.25-1m | 0.25 | 4.43 | 280.62 | 16.26 | 9.66 |
DL-0.5-1m | 0.5 | 4.43 | 336.47 | 16.24 | 9.15 |
DL-0.75-1m | 0.75 | 4.43 | 387.53 | 16.03 | 8.55 |
DL-1.0-1m | 1.0 | 4.43 | 413.86 | 15.26 | 6.75 |
DL-0-2m | 0 | 6.26 | 541.79 | 38.45 | 30.28 |
DL-0.25-2m | 0.25 | 6.26 | 556.92 | 31.92 | 24.83 |
DL-0.5-2m | 0.5 | 6.26 | 610.48 | 30.65 | 24.68 |
DL-0.75-2m | 0.75 | 6.26 | 665.20 | 28.07 | 20.10 |
DL-1.0-2m | 1.0 | 6.26 | 720.88 | 26.87 | 19.83 |
DL-0-3m | 0 | 7.67 | 653.70 | 55.33 | 50.69 |
DL-0.25-3m | 0.25 | 7.67 | 715.81 | 45.20 | 41.22 |
DL-0.5-3m | 0.5 | 7.67 | 837.91 | 41.40 | 37.29 |
DL-0.75-3m | 0.75 | 7.67 | 920.13 | 38.29 | 33.81 |
DL-1.0-3m | 1.0 | 7.67 | 1051.27 | 35.63 | 29.58 |
Type | Energy Dissipation Ep (J) | Impulse Ip (N∙s) | Average Impact Force Pm (kN) |
---|---|---|---|
DL-0-1m | 691.2 | 497.7 | 16.59 |
DL-0-2m | 1336.7 | 876.5 | 29.22 |
DL-0-3m | 2562.4 | 938.5 | 31.28 |
DL-0.25-1m | 669.4 | 495.8 | 16.53 |
DL-0.25-2m | 1281.2 | 805..2 | 26.84 |
DL-0.25-3m | 2612.0 | 1012.5 | 33.75 |
DL-0.5-1m | 684.7 | 614.7 | 20.49 |
DL-0.5-2m | 1335.6 | 876.2 | 29.21 |
DL-0.5-3m | 2868.7 | 1273.6 | 42.45 |
DL-0.75-1m | 692.4 | 644.3 | 21.47 |
DL-0.75-2m | 1307.6 | 773.8 | 25.80 |
DL-0.75-3m | 2831.7 | 1268.8 | 42.29 |
DL-1.0-1m | 703.1 | 645.1 | 21.50 |
DL-1.0-2m | 1365.7 | 856.3 | 28.54 |
DL-1.0-3m | 2916.4 | 1326.8 | 44.23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, J.; Li, L.; Huang, X.; Chen, H. Study on Shear Performance of Corroded Steel Fiber Reinforced Concrete Beams under Impact Load. Materials 2024, 17, 2566. https://doi.org/10.3390/ma17112566
Gu J, Li L, Huang X, Chen H. Study on Shear Performance of Corroded Steel Fiber Reinforced Concrete Beams under Impact Load. Materials. 2024; 17(11):2566. https://doi.org/10.3390/ma17112566
Chicago/Turabian StyleGu, Jianxiao, Liancheng Li, Xin Huang, and Hui Chen. 2024. "Study on Shear Performance of Corroded Steel Fiber Reinforced Concrete Beams under Impact Load" Materials 17, no. 11: 2566. https://doi.org/10.3390/ma17112566
APA StyleGu, J., Li, L., Huang, X., & Chen, H. (2024). Study on Shear Performance of Corroded Steel Fiber Reinforced Concrete Beams under Impact Load. Materials, 17(11), 2566. https://doi.org/10.3390/ma17112566