Influence of HiPIMS Pulse Widths on the Structure and Properties of Copper Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Preparation
2.2. Structure and Property Characterization
3. Results and Discussion
3.1. Target Current and Plasma Spectrum
3.2. Microstructure and Analysis
3.3. Conductivity and Adhesion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gudmundsson, J.T. Physics and Technology of Magnetron Sputtering Discharges. Plasma Sources Sci. Technol. 2020, 29, 113001. [Google Scholar] [CrossRef]
- Yu, H.-C.; Huang, J. Investigation of the Direct Plating Copper (DPC) on Al2O3, BeO or AlN Ceramic Substrates for High Power Density Applications. Int. Symp. Microelectron. 2016, 2016, 000079–000086. [Google Scholar] [CrossRef]
- Samuelsson, M.; Lundin, D.; Jensen, J.; Raadu, M.A.; Gudmundsson, J.T.; Helmersson, U. On the Film Density Using High Power Impulse Magnetron Sputtering. Surf. Coat. Technol. 2010, 205, 591–596. [Google Scholar] [CrossRef]
- Roychowdhury, T.; Shah, D.; Jain, V.; Patel, D.I.; Dodson, B.; Skinner, W.; Hilfiker, J.N.; Smith, S.J.; Linford, M.R. Multi-instrument Characterization of HiPIMS and DC Magnetron Sputtered Tungsten and Copper Films. Surf. Interface Anal. 2020, 52, 433–441. [Google Scholar] [CrossRef]
- Zoita, N.C.; Dinu, M.; Kiss, A.E.; Logofatu, C.; Braic, M. A Comparative Investigation of Hetero-Epitaxial TiC Thin Films Deposited by Magnetron Sputtering Using Either Hybrid DCMS/HiPIMS or Reactive DCMS Process. Appl. Surf. Sci. 2021, 537, 147903. [Google Scholar] [CrossRef]
- Xie, D.; Wei, L.J.; Liu, H.Y.; Zhang, K.; Leng, Y.X.; Matthews, D.T.A.; Ganesan, R.; Su, Y.Y. Deposition of Titanium Films on Complex Bowl-Shaped Workpieces Using DCMS and HiPIMS. Surf. Coat. Technol. 2022, 442, 128192. [Google Scholar] [CrossRef]
- Ghaemi, M.; Lopez-Cazalilla, A.; Sarakinos, K.; Rosaz, G.; Carlos, C.; Leith, S.; Calatroni, S.; Himmerlich, M.; Djurabekova, F. Growth of Nb Films on Cu for Superconducting Radio Frequency Cavities by Direct Current and High Power Impulse Magnetron Sputtering: A Molecular Dynamics and Experimental Study. Surf. Coat. Technol. 2024, 476, 130199. [Google Scholar] [CrossRef]
- Ghailane, A.; Larhlimi, H.; Tamraoui, Y.; Makha, M.; Busch, H.; Fischer, C.B.; Alami, J. The Effect of Magnetic Field Configuration on Structural and Mechanical Properties of TiN Coatings Deposited by HiPIMS and dcMS. Surf. Coat. Technol. 2020, 404, 126572. [Google Scholar] [CrossRef]
- Vitelaru, C.; Parau, A.C.; Dinu, M.; Pana, I.; Constantin, L.R.; Sobetkii, A.; Iordache, I. Transparent Silver Coatings with Copper Addition for Improved Conductivity by Combined DCMS and HiPIMS Process. Metals 2022, 12, 1264. [Google Scholar] [CrossRef]
- Hsu, S.-C.; Huang, Y.-H.; Chen, S.-C.; Wen, C.-K.; Yang, W.-S.; Liao, M.-H.; Yeh, T.-Y.; Yang, C.-M. Research on Microstructure and Shear Strength of Al Alloy Jointed by Sputtered Cu Thin Film Deposited through HiPIMS and DCMS Techniques. Surf. Interfaces 2023, 39, 102907. [Google Scholar] [CrossRef]
- Bai, H.; Li, J.; Gao, J.; Ni, J.; Bai, Y.; Jian, J.; Zhao, L.; Bai, B.; Cai, Z.; He, J.; et al. Comparison of CrN Coatings Prepared Using High-Power Impulse Magnetron Sputtering and Direct Current Magnetron Sputtering. Materials 2023, 16, 6303. [Google Scholar] [CrossRef]
- Anders, A. Tutorial: Reactive High Power Impulse Magnetron Sputtering (R-HiPIMS). J. Appl. Phys. 2017, 121, 171101. [Google Scholar] [CrossRef]
- Oskirko, V.O.; Kozhevnikov, V.Y.; Rabotkin, S.V.; Pavlov, A.P.; Semenov, V.A.; Solovyev, A.A. Ion Current Density on the Substrate during Short-Pulse HiPIMS. Plasma Sources Sci. Technol. 2023, 32, 075007. [Google Scholar] [CrossRef]
- Tiron, V.; Ursu, E.-L.; Cristea, D.; Bulai, G.; Stoian, G.; Matei, T.; Velicu, I.-L. Room Temperature Deposition of Nanocrystalline SiC Thin Films by DCMS/HiPIMS Co-Sputtering Technique. Nanomaterials 2022, 12, 512. [Google Scholar] [CrossRef]
- Solovyev, A.A.; Oskirko, V.O.; Semenov, V.A.; Oskomov, K.V.; Rabotkin, S.V. Comparative Study of Cu Films Prepared by DC, High-Power Pulsed and Burst Magnetron Sputtering. J. Electron. Mater. 2016, 45, 4052–4060. [Google Scholar] [CrossRef]
- Lou, B.-S.; Moirangthem, I.; Lee, J.-W. Fabrication of Tungsten Nitride Thin Films by Superimposed HiPIMS and MF System: Effects of Nitrogen Flow Rate. Surf. Coat. Technol. 2020, 393, 125743. [Google Scholar] [CrossRef]
- Das, C.R.; Rangwala, M.; Ghosh, A. Influence of Substrate Bias Voltage on Microstructure and Mechanical Characteristics of TiAlSiN Coating Deposited by High Power Impulse Magnetron Sputtering (HiPIMS). Surf. Coat. Technol. 2023, 458, 129351. [Google Scholar] [CrossRef]
- Tu, R.; Yuan, Y.; Yang, M.; Min, R.; Jiao, J.; Li, Q.; Yang, M.; Ji, B.; Zhang, S. Effect of Negative Bias of HiPIMS and AIP Hybrid Deposition on Microstructure, Mechanical and Anti-Corrosive Properties of Cr2N/TiN Multilayer Coatings. Coatings 2022, 12, 845. [Google Scholar] [CrossRef]
- Chau, K.-H.; Kawai, Y.; Kan, C.-W.; Syu, J.-L.; Liu, Y.-C.; Chen, Y.-H.; Liang, C.-J.; He, J.-L. Plasma Wave after HIPIMS Pulse: Time-Resolved Diagnostic on HIPIMS Copper Plasma Using a Home-Made Langmuir Probe. Jpn. J. Appl. Phys. 2022, 61, SA1020. [Google Scholar] [CrossRef]
- Qin, L.; Ma, D.; Li, Y.; Jing, P.; Huang, B.; Jing, F.; Xie, D.; Leng, Y.; Akhavan, B.; Huang, N. Ti–Cu Coatings Deposited by a Combination of HiPIMS and DC Magnetron Sputtering: The Role of Vacuum Annealing on Cu Diffusion, Microstructure, and Corrosion Resistance. Coatings 2020, 10, 1064. [Google Scholar] [CrossRef]
- Pana, I.; Parau, A.C.; Dinu, M.; Kiss, A.E.; Constantin, L.R.; Vitelaru, C. Optical Properties and Stability of Copper Thin Films for Transparent Thermal Heat Reflectors. Metals 2022, 12, 262. [Google Scholar] [CrossRef]
- Cao, Y.; Xia, Y.; Duan, B.; Mu, W.; Tan, X.; Wu, H. Microstructure Evolution and Anti-Wear Mechanism of Cu Film Fabricated by Magnetron Sputtering Deposition. Mater. Lett. 2022, 315, 131941. [Google Scholar] [CrossRef]
- Wang, Q.; Xiao, S.; Shi, S.Q.; Xu, S.; Cai, L. Self-Bonded Natural Fiber Product with High Hydrophobic and EMI Shielding Performance via Magnetron Sputtering Cu Film. Appl. Surf. Sci. 2019, 475, 947–952. [Google Scholar] [CrossRef]
- Qin, W.; Fu, L.; Zhu, J.; Yang, W.; Sang, J.; Li, D.; Zhou, L. Electrical and Thermal Properties of Cu-Ta Films Prepared by Magnetron Sputtering. Appl. Surf. Sci. 2018, 443, 97–102. [Google Scholar] [CrossRef]
- Ghotbi, M.Y.; Rahmati, Z. Nanostructured Copper and Copper Oxide Thin Films Fabricated by Hydrothermal Treatment of Copper Hydroxide Nitrate. Mater. Des. 2015, 85, 719–723. [Google Scholar] [CrossRef]
- Zamani Meymian, M.R.; Delavari Heravi, A.; Kosari Mehr, A. Influence of Bias Voltage on Optical and Structural Characteristics of Cu3N Films Deposited by Reactive RF Magnetron Sputtering in a Pure Nitrogen Atmosphere. Mater. Sci. Semicond. Process. 2020, 112, 104995. [Google Scholar] [CrossRef]
- Cale, T.S.; Merchant, T.P.; Borucki, L.J.; Labun, A.H. Topography Simulation for the Virtual Wafer Fab. Thin Solid Film. 2000, 365, 152–175. [Google Scholar] [CrossRef]
- Zhang, H.; Le, K.; Wang, C.; Sun, J.; Xu, S.; Liu, W. Influence of Deposition Temperature on the Structure and Current-Carrying Friction Performance of Cu Films by DC Magnetron Sputtering Technology. Lubricants 2023, 11, 8. [Google Scholar] [CrossRef]
- Yang, Z.-H.; Lee, P.-I.; Chuang, T.-H. Effects of Substrate Bias on the Sputtering of High Density (111)- Nanotwinned Cu Films on SiC Chips. Sci. Rep. 2022, 12, 15408. [Google Scholar] [CrossRef]
- Huo, C.; Lundin, D.; Raadu, M.A.; Anders, A.; Gudmundsson, J.T.; Brenning, N. On the Road to Self-Sputtering in High Power Impulse Magnetron Sputtering: Particle Balance and Discharge Characteristics. Plasma Sources Sci. Technol. 2014, 23, 025017. [Google Scholar] [CrossRef]
- Huo, C.; Raadu, M.A.; Lundin, D.; Gudmundsson, J.T.; Anders, A.; Brenning, N. Gas Rarefaction and the Time Evolution of Long High-Power Impulse Magnetron Sputtering Pulses. Plasma Sources Sci. Technol. 2012, 21, 045004. [Google Scholar] [CrossRef]
- Anders, A.; Andersson, J.; Ehiasarian, A. High Power Impulse Magnetron Sputtering: Current-Voltage-Time Characteristics Indicate the Onset of Sustained Self-Sputtering. J. Appl. Phys. 2007, 102, 113303. [Google Scholar] [CrossRef]
- Gudmundsson, J.T.; Lundin, D.; Raadu, M.A.; Minea, T.; Brenning, N. The Current Waveform in Reactive High Power Impulse Magnetron Sputtering. In Proceedings of the 2016 IEEE International Conference on Plasma Science (ICOPS), Banff, AB, Canada, 19–23 June 2016. [Google Scholar] [CrossRef]
- Tang, Z.; Chen, Y.; Ye, W. Calculation of Surface Properties of Cubic and Hexagonal Crystals through Molecular Statics Simulations. Crystals 2020, 10, 329. [Google Scholar] [CrossRef]
- Shodja, H.M.; Enzevaee, C. Surface Characterization of Face-Centered Cubic Crystals. Mech. Mater. 2019, 129, 15–22. [Google Scholar] [CrossRef]
- Vorokh, A.S. Scherrer Formula: Estimation of Error in Determining Small Nanoparticle Size. Nanosyst. Phys. Chem. Math. 2018, 9, 364–369. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Putasaeng, B.; Thongbai, P. Origin of Significantly Enhanced Dielectric Response and Nonlinear Electrical Behavior in Ni2+-Doped CaCu3Ti4O12: Influence of DC Bias on Electrical Properties of Grain Boundary and Associated Giant Dielectric Properties. Ceram. Int. 2019, 45, 6944–6949. [Google Scholar] [CrossRef]
- Bishara, H.; Lee, S.; Brink, T.; Ghidelli, M.; Dehm, G. Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure. ACS Nano 2021, 15, 16607–16615. [Google Scholar] [CrossRef]
- Chang, S.-Y.; Chen, C.-F.; Lin, S.-J.; Kattamis, T.Z. Electrical Resistivity of Metal Matrix Composites. Acta Mater. 2003, 51, 6291–6302. [Google Scholar] [CrossRef]
- Huff, M. Review Paper: Residual Stresses in Deposited Thin-Film Material Layers for Micro- and Nano-Systems Manufacturing. Micromachines 2022, 13, 2084. [Google Scholar] [CrossRef]
- Wu, B.H.; Wu, J.; Jiang, F.; Ma, D.L.; Chen, C.Z.; Sun, H.; Leng, Y.X.; Huang, N. Plasma Characteristics and Properties of Cu Films Prepared by High Power Pulsed Magnetron Sputtering. Vacuum 2017, 135, 93–100. [Google Scholar] [CrossRef]
Voltage (V) | Pulse Width (μs) | Duty Cycle | Average Power (W) | Temperature (°C) | Deposition Time (min) | Distance (mm) | |
---|---|---|---|---|---|---|---|
1 | 535 | 30 | 3% | 180 | 23 | 45 | 60 |
2 | 535 | 50 | 3% | 180 | 23 | 45 | 60 |
3 | 535 | 100 | 3% | 180 | 23 | 45 | 60 |
4 | 535 | 200 | 3% | 180 | 23 | 45 | 60 |
5 | 535 | 300 | 3% | 180 | 23 | 45 | 60 |
DCMS | 370 | - | 100% | 180 | 23 | 23 | 60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, X.; Bai, H.; Ren, Y.; Li, J.; Liu, X. Influence of HiPIMS Pulse Widths on the Structure and Properties of Copper Films. Materials 2024, 17, 2342. https://doi.org/10.3390/ma17102342
Liu X, Bai H, Ren Y, Li J, Liu X. Influence of HiPIMS Pulse Widths on the Structure and Properties of Copper Films. Materials. 2024; 17(10):2342. https://doi.org/10.3390/ma17102342
Chicago/Turabian StyleLiu, Xincheng, Heda Bai, Yongjie Ren, Jin Li, and Xiangli Liu. 2024. "Influence of HiPIMS Pulse Widths on the Structure and Properties of Copper Films" Materials 17, no. 10: 2342. https://doi.org/10.3390/ma17102342
APA StyleLiu, X., Bai, H., Ren, Y., Li, J., & Liu, X. (2024). Influence of HiPIMS Pulse Widths on the Structure and Properties of Copper Films. Materials, 17(10), 2342. https://doi.org/10.3390/ma17102342