Cluster-Assisted Mesoplasma Chemical Vapor Deposition for Fast Epitaxial Growth of SiGe/Si Heterostructures: A Molecular Dynamics Simulation Study
Abstract
:1. Introduction
2. Simulation Method
3. Results and Discussion
3.1. Formation and Characteristics of Mixed SiGe Nanoclusters
3.2. Impingement of a Single Nanocluster on the Smooth Si Surface
3.3. Impingement of Multiple Clusters on the Smooth Si Substrate
3.4. Bridging Growth by Multi-Cluster Impingement on Si Trench Surface
3.5. Comparisons between the Simulation and the Experimental Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ball, P. Semiconductor Technology Looks Up. Nat. Mater. 2022, 21, 132. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Xie, X.; Xu, Q.; Zhang, W.; Song, H. Research Progress of SiGe Heterojunction Photodetectors. In Proceedings of the Seventh Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China, 5–7 November 2020; Volume 11763, pp. 2679–2687. [Google Scholar]
- Rosenblad, C.; Kummer, M.; Dommann, A.; Müller, E.; Gusso, M.; Tapfer, L.; von Känel, H. Virtual Substrates for the N- and p-Type Si-MODFET Grown at Very High Rates. Mater. Sci. Eng. B 2000, 74, 113–117. [Google Scholar] [CrossRef]
- Greve, D.W. Growth of Epitaxial Germanium-Silicon Heterostructures by Chemical Vapour Deposition. Mater. Sci. Eng. B 1993, 18, 22–51. [Google Scholar] [CrossRef]
- Wu, S.; Kambara, M.; Yoshida, T. Superhigh-Rate Epitaxial Silicon Thick Film Deposition from Trichlorosilane by Mesoplasma Chemical Vapor Deposition. Plasma Chem. Plasma Process. 2013, 33, 433–451. [Google Scholar] [CrossRef]
- Diaz, J.M.A.; Kambara, M.; Yoshida, T. Detection of Si Nanoclusters by X-ray Scattering during Silicon Film Deposition by Mesoplasma Chemical Vapor Deposition. J. Appl. Phys. 2008, 104, 13536. [Google Scholar] [CrossRef]
- Chen, L.W.; Shibuta, Y.; Kambara, M.; Yoshida, T. Molecular Dynamics Simulation of Si Nanoclusters in High Rate and Low Temperature Epitaxy. J. Appl. Phys. 2012, 111, 123301. [Google Scholar] [CrossRef]
- Tarus, J.; Nordlund, K. Molecular Dynamics Study on Si20 Cluster Deposition on Si (0 0 1). Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. At. 2003, 212, 281–285. [Google Scholar] [CrossRef]
- Kwon, I.; Biswas, R.; Grest, G.S.; Soukoulis, C.M. Molecular-Dynamics Simulation of Amorphous and Epitaxial Si Film Growth on Si (111). Phys. Rev. B 1990, 41, 3678. [Google Scholar] [CrossRef] [PubMed]
- Hong, S. Quantum Molecular Dynamics Simulations of Chemical Vapor Deposition Synthesis of MoS2 Crystal Assisted by H2 Partial Pressures. In Proceedings of the 2D Photonic Materials and Devices III, San Francisco, CA, USA, 1–6 February 2020; Volume 11282, pp. 55–60. [Google Scholar]
- Lu, Y.; Yang, X. Molecular Simulation of Graphene Growth by Chemical Deposition on Nickel Using Polycyclic Aromatic Hydrocarbons. Carbon 2015, 81, 564–573. [Google Scholar] [CrossRef]
- Niu, T.; Zhou, M.; Zhang, J.; Feng, Y.; Chen, W. Growth Intermediates for CVD Graphene on Cu (111): Carbon Clusters and Defective Graphene. J. Am. Chem. Soc. 2013, 135, 8409–8414. [Google Scholar] [CrossRef]
- Neyts, E.C.; Van Duin, A.C.T.; Bogaerts, A. Insights in the Plasma-Assisted Growth of Carbon Nanotubes through Atomic Scale Simulations: Effect of Electric Field. J. Am. Chem. Soc. 2012, 134, 1256–1260. [Google Scholar] [CrossRef]
- Shabnam, S.; Mao, Q.; Van Duin, A.C.T.; Luo, K.H. Evaluation of the Effect of Nickel Clusters on the Formation of Incipient Soot Particles from Polycyclic Aromatic Hydrocarbons via ReaxFF Molecular Dynamics Simulations. Phys. Chem. Chem. Phys. 2019, 21, 9865–9875. [Google Scholar] [CrossRef]
- Zhang, J.; Wang, F.; Shenoy, V.B.; Tang, M.; Lou, J. Towards Controlled Synthesis of 2D Crystals by Chemical Vapor Deposition (CVD). Mater. Today 2020, 40, 132–139. [Google Scholar] [CrossRef]
- Wang, W.B.; Kambara, M. A Molecular Dynamics Simulation of Inhomogeneous Silicon-Germanium Nucleation from Supersaturated Vapor Mixtures. AIP Adv. 2021, 11, 085119. [Google Scholar] [CrossRef]
- Wang, W.-B.; Ohta, R.; Kambara, M. Study on Liquid-like SiGe Cluster Growth during Co-Condensation from Supersaturated Vapor Mixtures by Molecular Dynamics Simulation. Phys. Chem. Chem. Phys. 2022, 24, 7442–7450. [Google Scholar] [CrossRef]
- Horstmann, R.; Hecht, L.; Kloth, S.; Vogel, M. Structural and Dynamical Properties of Liquids in Confinements: A Review of Molecular Dynamics Simulation Studies. Langmuir 2022, 38, 6506–6522. [Google Scholar] [CrossRef]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO—The Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 15012. [Google Scholar] [CrossRef]
- Tersoff, J. Empirical Interatomic Potential for Silicon with Improved Elastic Properties. Phys. Rev. B 1988, 38, 9902. [Google Scholar] [CrossRef]
- Tersoff, J. Modeling Solid-State Chemistry: Interatomic Potentials for Multicomponent Systems. Phys. Rev. B 1989, 39, 5566. [Google Scholar] [CrossRef]
- Cook, S.J.; Clancy, P. Comparison of Semi-Empirical Potential Functions for Silicon and Germanium. Phys. Rev. B 1993, 47, 7686. [Google Scholar] [CrossRef]
- Martín, L.; Santos, I.; López, P.; Marqués, L.A.; Aboy, M.; Pelaz, L. Modeling SiGe through Classical Molecular Dynamics Simulations: Chasing an Appropriate Empirical Potential. In Proceedings of the 2018 Spanish Conference on Electron Devices (CDE), Salamanca, Spain, 14–16 November 2018; pp. 1–4. [Google Scholar]
- Wang, X.; Simón, R.-H.; Dobnikar, J.; Frenkel, D. The Lennard-Jones Potential: When (Not) to Use It. Phys. Chem. Chem. Phys. 2020, 22, 10624–10633. [Google Scholar] [CrossRef]
- Delhommelle, J.; Millié, P. Inadequacy of the Lorentz-Berthelot Combining Rules for Accurate Predictions of Equilibrium Properties by Molecular Simulation. Mol. Phys. 2001, 99, 619–625. [Google Scholar] [CrossRef]
- Imabayashi, S.; Ishimaru, M. Molecular Dynamics Study on Structural Relaxation Processes in Amorphous Germanium. Mater. Trans. 2017, 58, 857–861. [Google Scholar] [CrossRef]
- Kail, F.; Farjas, J.; Roura, P.; Secouard, C.; Nos, O.; Bertomeu, J.; Alzina, F.; i Cabarrocas, P. Relaxation and Derelaxation of Pure and Hydrogenated Amorphous Silicon during Thermal Annealing Experiments. Appl. Phys. Lett. 2010, 97, 31918. [Google Scholar] [CrossRef]
- Harjunmaa, A.; Nordlund, K. Molecular Dynamics Simulations of Si/Ge Cluster Condensation. Comput. Mater. Sci. 2009, 47, 456–459. [Google Scholar] [CrossRef]
- Harjunmaa, A.; Nordlund, K.; Stukowski, A. Structure of Si/Ge Nanoclusters: Kinetics and Thermodynamics. Comput. Mater. Sci. 2011, 50, 1504–1508. [Google Scholar] [CrossRef]
- Wedekind, J.; Reguera, D.; Strey, R. Influence of Thermostats and Carrier Gas on Simulations of Nucleation. J. Chem. Phys. 2007, 127, 64501. [Google Scholar] [CrossRef]
- Kuksin, A.Y.; Morozov, I.V.; Norman, G.E.; Stegailov, V.V.; Valuev, I.A. Standards for Molecular Dynamics Modelling and Simulation of Relaxation. Mol. Simul. 2005, 31, 1005–1017. [Google Scholar] [CrossRef]
- Yamaguchi, N.; Sasajima, Y.; Terashima, K.; Yoshida, T. Molecular Dynamics Study of Cluster Deposition in Thermal Plasma Flash Evaporation. Thin Solid Film. 1999, 345, 34–37. [Google Scholar] [CrossRef]
- Terban, M.W.; Billinge, S.J.L. Structural Analysis of Molecular Materials Using the Pair Distribution Function. Chem. Rev. 2021, 122, 1208–1272. [Google Scholar] [CrossRef]
- Yang, H.; Song, G.; Hogan Jr, C.J. A Molecular Dynamics Study of Collisional Heat Transfer to Nanoclusters in the Gas Phase. J. Aerosol Sci. 2022, 159, 105891. [Google Scholar] [CrossRef]
- van der Tol, J.; Janssens, E. Size-Dependent Velocity Distributions and Temperatures of Metal Clusters in a Helium Carrier Gas. Phys. Rev. A 2020, 102, 22806. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004; Volume 85. [Google Scholar]
- Kambara, M.; Yagi, H.; Sawayanagi, M.; Yoshida, T. High Rate Epitaxy of Silicon Thick Films by Medium Pressure Plasma Chemical Vapor Deposition. J. Appl. Phys. 2006, 99, 074901. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, W.-b.; Li, W.; Ohta, R.; Kambara, M. Cluster-Assisted Mesoplasma Chemical Vapor Deposition for Fast Epitaxial Growth of SiGe/Si Heterostructures: A Molecular Dynamics Simulation Study. Materials 2024, 17, 2448. https://doi.org/10.3390/ma17102448
Wang W-b, Li W, Ohta R, Kambara M. Cluster-Assisted Mesoplasma Chemical Vapor Deposition for Fast Epitaxial Growth of SiGe/Si Heterostructures: A Molecular Dynamics Simulation Study. Materials. 2024; 17(10):2448. https://doi.org/10.3390/ma17102448
Chicago/Turabian StyleWang, Wen-bo, Wenfang Li, Ryoshi Ohta, and Makoto Kambara. 2024. "Cluster-Assisted Mesoplasma Chemical Vapor Deposition for Fast Epitaxial Growth of SiGe/Si Heterostructures: A Molecular Dynamics Simulation Study" Materials 17, no. 10: 2448. https://doi.org/10.3390/ma17102448
APA StyleWang, W. -b., Li, W., Ohta, R., & Kambara, M. (2024). Cluster-Assisted Mesoplasma Chemical Vapor Deposition for Fast Epitaxial Growth of SiGe/Si Heterostructures: A Molecular Dynamics Simulation Study. Materials, 17(10), 2448. https://doi.org/10.3390/ma17102448