materials-logo

Journal Browser

Journal Browser

Chemical Vapor Deposition (CVD) Techniques in Materials Science for Electronic Devices Applications

A special issue of Materials (ISSN 1996-1944). This special issue belongs to the section "Thin Films and Interfaces".

Deadline for manuscript submissions: closed (10 May 2024) | Viewed by 3680

Special Issue Editors


E-Mail Website
Guest Editor
National Institute of Astrophysics, Optics and Electronics (INAOE), Electronics Department, Puebla 72840, México
Interests: amorphous semiconductors; nano and microcrystalline materials; silicon–germanium alloys; sensors; microbolometers; silicon solar cells; HIT solar cells

E-Mail Website
Guest Editor
National Institute of Astrophysics, Optics and Electronics (INAOE), Electronics department, Puebla 72840, México
Interests: amorphous semiconductors; silicon-Germanium alloys; sensors; microbolometers; thermoelectric devices
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

At the present time, different chemical vapor deposition (CVD) techniques have become an essential part of the semiconductor industry and materials research for the development of a large variety of materials with applications in electronic devices. Atmospheric pressure CVD (APCVD), low-pressure CVD (LPCVD), plasma-enhanced CVD (PECVD) and hot wire CVD (HWCVD) are the most used techniques for the deposition of amorphous, nanocrystalline, microcrystalline and polycrystalline phases of semiconductors. Those materials are employed on thin film devices, as sensors, thin film solar cells, thin film transistors (TFTs), light-emitting diodes (LEDs), silicon heterojunction solar cells (HIT) and micro-electro-mechanical systems (MEMS), among others.  

This Special Issue invites original articles dedicated to the following topics, in which CVD techniques are used: deposition and characterization of amorphous semiconductors, hydrogenated amorphous silicon (a-Si:H) and alloys, as hydrogenated amorphous silicon–germanium (a-SiGe:H), and their application on electronic devices; hydrogenated amorphous silicon carbide (a-SiC:H) for applications in light emission and LEDs; nano- and microcrystalline silicon (nc-Si, µc-Si:H) and their applications in devices, as thin film solar cells and TFTs; polycrystalline silicon (poly-Si) and its application on MEMS; infrared sensors as microbolometers based on a-Si:H and a-SiGe:H; silicon-rich oxide (SRO) for light emission applications and UV sensors; heterojunction solar cells (HIT) based on crystalline silicon (c-Si:H) and a-Si:H thin films.

Dr. Mario Moreno Moreno
Dr. Alfonso Torres
Guest Editors

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Materials is an international peer-reviewed open access semimonthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2600 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • thin films
  • CVD
  • LPCVD
  • PECVD
  • HWCVD
  • amorphous semiconductors
  • microcrystalline semiconductors
  • silicon
  • germanium
  • silicon–germanium
  • silicon–carbide
  • silicon-rich oxide

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • e-Book format: Special Issues with more than 10 articles can be published as dedicated e-books, ensuring wide and rapid dissemination.

Further information on MDPI's Special Issue polices can be found here.

Published Papers (3 papers)

Order results
Result details
Select all
Export citation of selected articles as:

Research

13 pages, 3508 KiB  
Article
Influence of Carbon Source on the Buffer Layer for 4H-SiC Homoepitaxial Growth
by Shangyu Yang, Ning Guo, Siqi Zhao, Yunkai Li, Moyu Wei, Yang Zhang and Xingfang Liu
Materials 2024, 17(11), 2612; https://doi.org/10.3390/ma17112612 - 29 May 2024
Viewed by 857
Abstract
In this study, we systematically explore the impact of C/Si ratio, pre-carbonization time, H2 etching time, and growth pressure on the buffer layer and subsequent epitaxial layer of 6-inch 4H-SiC wafers. Our findings indicate that the buffer layer’s C/Si ratio and growth [...] Read more.
In this study, we systematically explore the impact of C/Si ratio, pre-carbonization time, H2 etching time, and growth pressure on the buffer layer and subsequent epitaxial layer of 6-inch 4H-SiC wafers. Our findings indicate that the buffer layer’s C/Si ratio and growth pressure significantly influence the overall quality of the epitaxial wafer. Specifically, an optimal C/Si ratio of 0.5 and a growth pressure of 70 Torr yield higher-quality epitaxial layers. Additionally, the pre-carbonization time and H2 etching time primarily affect the uniformity and surface quality of the epitaxial wafer, with a pre-carbonization time of 3 s and an H2 etching time of 3 min found to enhance the surface quality of the epitaxial layer. Full article
Show Figures

Figure 1

14 pages, 5722 KiB  
Article
Cluster-Assisted Mesoplasma Chemical Vapor Deposition for Fast Epitaxial Growth of SiGe/Si Heterostructures: A Molecular Dynamics Simulation Study
by Wen-bo Wang, Wenfang Li, Ryoshi Ohta and Makoto Kambara
Materials 2024, 17(10), 2448; https://doi.org/10.3390/ma17102448 - 19 May 2024
Viewed by 733
Abstract
Co-condensation of mixed SiGe nanoclusters and impingement of SiGe nanoclusters on a Si substrate were applied using molecular dynamics (MD) simulation in this study to mimic the fast epitaxial growth of SiGe/Si heterostructures under mesoplasma chemical vapor deposition (CVD) conditions. The condensation dynamics [...] Read more.
Co-condensation of mixed SiGe nanoclusters and impingement of SiGe nanoclusters on a Si substrate were applied using molecular dynamics (MD) simulation in this study to mimic the fast epitaxial growth of SiGe/Si heterostructures under mesoplasma chemical vapor deposition (CVD) conditions. The condensation dynamics and properties of the SiGe nanoclusters during the simulations were investigated first, and then the impingement of transient SiGe nanoclusters on both Si smooth and trench substrate surfaces under varying conditions was studied theoretically. The results show that the mixed nanoclusters as precursors demonstrate potential for enhancing epitaxial SiGe film growth at a high growth rate, owing to their loosely bound atomic structures and high mobility on the substrate surface. By varying cluster sizes and substrate temperatures, this study also reveals that smaller clusters and higher substrate temperatures contribute to faster structural ordering and smoother surface morphologies. Furthermore, the formed layers display a consistent SiGe composition, closely aligning with nominal values, and the cluster-assisted deposition method achieves the epitaxial bridging of heterostructures during cluster impingement, highlighting its additional distinctive characteristics. The implications of this work make it clear that the mechanism of fast alloyed epitaxial film growth by cluster-assisted mesoplasma CVD is critical for extending it as a versatile platform for synthesizing various epitaxial films. Full article
Show Figures

Figure 1

18 pages, 19065 KiB  
Article
Optical and Structural Properties of Aluminum Nitride Epi-Films at Room and High Temperature
by Yanlian Yang, Yao Liu, Lianshan Wang, Shuping Zhang, Haixia Lu, Yi Peng, Wenwang Wei, Jia Yang, Zhe Chuan Feng, Lingyu Wan, Benjamin Klein, Ian T. Ferguson and Wenhong Sun
Materials 2023, 16(23), 7442; https://doi.org/10.3390/ma16237442 - 30 Nov 2023
Cited by 3 | Viewed by 1530
Abstract
The high-quality aluminum nitride (AlN) epilayer is the key factor that directly affects the performance of semiconductor deep-ultraviolet (DUV) photoelectronic devices. In this work, to investigate the influence of thickness on the quality of the AlN epilayer, two AlN-thick epi-film samples were grown [...] Read more.
The high-quality aluminum nitride (AlN) epilayer is the key factor that directly affects the performance of semiconductor deep-ultraviolet (DUV) photoelectronic devices. In this work, to investigate the influence of thickness on the quality of the AlN epilayer, two AlN-thick epi-film samples were grown on c-plane sapphire substrates. The optical and structural characteristics of AlN films are meticulously examined by using high-resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), a dual-beam ultraviolet-visible spectrophotometer, and spectroscopic ellipsometry (SE). It has been found that the quality of AlN can be controlled by adjusting the AlN film thickness. The phenomenon, in which the thicker AlNn film exhibits lower dislocations than the thinner one, demonstrates that thick AlN epitaxial samples can work as a strain relief layer and, in the meantime, help significantly bend the dislocations and decrease total dislocation density with the thicker epi-film. The Urbach’s binding energy and optical bandgap (Eg) derived by optical transmission (OT) and SE depend on crystallite size, crystalline alignment, and film thickness, which are in good agreement with XRD and SEM results. It is concluded that under the treatment of thickening film, the essence of crystal quality is improved. The bandgap energies of AlN samples obtained from SE possess larger values and higher accuracy than those extracted from OT. The Bose–Einstein relation is used to demonstrate the bandgap variation with temperature, and it is indicated that the thermal stability of bandgap energy can be improved with an increase in film thickness. It is revealed that when the thickness increases to micrometer order, the thickness has little effect on the change of Eg with temperature. Full article
Show Figures

Figure 1

Back to TopTop