Solubility of Hydrogen in a WMoTaNbV High-Entropy Alloy
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sample Processing
2.2. Elastic Recoil Detection Analysis
3. Modeling Methods
4. Results
4.1. Activation Energy of H Solution
4.2. H Solution Enthalpy
5. Discussion
6. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
HEA | high entropy alloy |
ERDA | elastic recoil detection analysis |
DFT | density functional theory |
References
- Wert, C.A. Trapping of Hydrogen in Metals; Topics in Applied Physics; Springer: Berlin/Heidelberg, Germany, 1978; Volume 29, pp. 305–330. [Google Scholar]
- Stepień, Z.M. Formation of tantalum hydrides in high electric field. Appl. Surf. Sci. 2000, 165, 224–232. [Google Scholar] [CrossRef]
- Richmond, S.; Bridgewater, J.S.; Ward, J.W.; Allen, T.H. The solubility of hydrogen and deuterium in alloyed, unalloyed and impure plutonium metal. IOP Conf. Ser. Mater. Sci. Eng. 2010, 9, 012036. [Google Scholar] [CrossRef]
- Fukai, Y. State of hydrogen in BCC metals: Its quantum-mechanical character. Jpn. J. Appl. Phys. 1983, 22, 207. [Google Scholar] [CrossRef]
- Shahi, R.R.; Gupta, A.K.; Kumari, P. Perspectives of high entropy alloys as hydrogen storage materials. Int. J. Hydrogen Energy 2023, 48, 21412–21428. [Google Scholar] [CrossRef]
- Kubo, K.; Itoh, H.; Takahashi, T.; Ebisawa, T.; Kabutomori, T.; Nakamura, Y.; Akiba, E. Hydrogen absorbing properties and structures of Ti–Cr–Mo alloys. J. Alloy. Compd. 2003, 356-357, 452–455. [Google Scholar] [CrossRef]
- Okada, M.; Chou, T.; Kamegawa, A.; Tamura, T.; Takamura, H.; Matsukawa, A.; Yamashita, S. Ti–Cr–X protium absorbing alloys with high protium content for fuel-cell. J. Alloy. Compd. 2003, 356–357, 480–485. [Google Scholar] [CrossRef]
- Akiba, E.; Iba, H. Hydrogen absorption by Laves phase related BCC solid solution. Intermetallics 1998, 6, 461–470. [Google Scholar] [CrossRef]
- Nayebossadri, S.; Greenwood, C.J.; Book, D. Evaluating some design criteria for TiFe-based ternary hydrogen storage alloys. J. Alloy. Compd. 2023, 947, 169456. [Google Scholar] [CrossRef]
- Sahlberg, M.; Karlsson, D.; Zlotea, C.; Jansson, U. Superior hydrogen storage in high entropy alloys. Sci. Rep. 2016, 6, 36770. [Google Scholar] [CrossRef]
- Tian, Y.S.; Zhou, W.Z.; Tan, Q.B.; Wu, M.X.; Shen, Q.; Zhu, G.L.; Dong, A.P.; Da, S.H.U.; Sun, B.D. A review of refractory high-entropy alloys. Trans. Nonferrous Met. Soc. China 2022, 32, 3487–3515. [Google Scholar] [CrossRef]
- Pickering, E.J.; Jones, N.G. High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 2016, 61, 183–202. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Ma, Z.L.; Wang, M.; Chen, Y.W.; Tan, Y.D.; Cheng, X.W. Design of novel low-density refractory high entropy alloys for high-temperature applications. Mater. Sci. Eng. A 2019, 755, 318–322. [Google Scholar] [CrossRef]
- Dada, M.; Popoola, P.; Adeosun, S.; Mathe, N. High Entropy Alloys for Aerospace Applications; IntechOpen: Rijeka, Croatia, 2019. [Google Scholar]
- Ren, H.; Chen, R.R.; Gao, X.F.; Liu, T.; Qin, G.; Wu, S.P.; Guo, J.J. High-performance AlCoCrFeNi high entropy alloy with marine application perspective. J. Mater. Res. Technol. 2023, 25, 6751–6763. [Google Scholar] [CrossRef]
- Pickering, E.J.; Carruthers, A.W.; Barron, P.J.; Middleburgh, S.C.; Armstrong, D.E.J.; Gandy, A.S. High-entropy alloys for advanced nuclear applications. Entropy 2021, 23, 98. [Google Scholar] [CrossRef]
- Marques, F.; Balcerzak, M.; Winkelmann, F.; Zepon, G.; Felderhoff, M. Review and outlook on high-entropy alloys for hydrogen storage. Energy Environ. Sci. 2021, 14, 5191–5227. [Google Scholar] [CrossRef]
- Liski, A.; Vuoriheimo, T.; Jalkanen, P.; Mizohata, K.; Lu, E.; Likonen, J.; Heino, J.; Heinola, K.; Zayachuk, Y.; Widdowson, A.; et al. Irradiation Damage Independent Deuterium Retention in WMoTaNbV. Materials 2022, 15, 7296. [Google Scholar] [CrossRef]
- Vuoriheimo, T.; Liski, A.; Jalkanen, P.; Ahlgren, T.; Mizohata, K.; Heinola, K.; Zayachuk, Y.; Tseng, K.; Tsai, C.; Yeh, J.; et al. Hydrogen isotope exchage experiments in high entropy alloy WMoTaNbV. Nucl. Mater. Energy 2023, 34, 101348. [Google Scholar] [CrossRef]
- Tseng, K.K.; Juan, C.C.; Tso, S.; Chen, H.C.; Tsai, C.W.; Yeh, J.W. Effects of Mo, Nb, Ta, Ti, and Zr on mechanical properties of equiatomic Hf-Mo-Nb-Ta-Ti-Zr alloys. Entropy 2018, 21, 15. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Miracle, D.B.; Chuang, C.P.; Liaw, P.K. Refractory high-entropy alloys. Intermetallics 2010, 18, 1758–1765. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Furthmüller, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Blöchl, P.E. Projector Augmented-Wave Method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [PubMed]
- Kirchheim, R. Solid solutions of hydrogen in complex materials. Solid State Phys. Adv. Res. Appl. 2004, 59, 203–292. [Google Scholar]
- Dean, J.A. Lange’s Handbook of Chemistry, 15th ed.; McGraw-Hill: New York, NY, USA, 1999. [Google Scholar]
- Fukai, Y. The Metal-Hydrogen System: Basic Bulk Properties; Springer Science & Business Media: New York, NY, USA, 2006; Volume 21. [Google Scholar]
- Ohsawa, K.; Eguchi, K.; Watanabe, H.; Yamaguchi, M.; Yagi, M. Configuration and binding energy of multiple hydrogen atoms trapped in monovacancy in bcc transition metals. Phys. Rev. B 2012, 85, 94102. [Google Scholar] [CrossRef]
- Henriksson, K.O.E.; Nordlund, K.; Krasheninnikov, A.; Keinonen, J. Difference in hydrogen and helium cluster formation. Appl. Phys. Lett. 2005, 87, 163113-1–163113-3. [Google Scholar] [CrossRef]
- Heinola, K.; Ahlgren, T.; Nordlund, K.; Keinonen, J. Hydrogen interaction with point defects in tungsten. Phys. Rev. B 2010, 82, 94102. [Google Scholar] [CrossRef]
- Becquart, C.S.; Domain, C. A density functional theory assessment of the clustering behaviour of He and H in tungsten. J. Nucl. Mater. 2009, 386, 109–111. [Google Scholar] [CrossRef]
- Ren, X.L.; Shi, P.H.; Yao, B.D.; Wu, L.; Wu, X.Y.; Wang, Y.X. Hydrogen solution in high-entropy alloys. Phys. Chem. Chem. Phys 2021, 23, 27185. [Google Scholar] [CrossRef]
- Lindblom, O.; Ahlgren, T.; Heinola, K. Molecular dynamics simulations of hydrogen isotope exchange in tungsten vacancies. Nucl. Mater. Energy 2021, 29, 101099. [Google Scholar] [CrossRef]
- Cui, T.; Dong, H.; Xu, X.; Ma, J.; Lu, Z.; Tang, Y.; Pan, D.; Lozano-Perez, S.; Shoji, T. Hydrogen-enhanced oxidation of ferrite phase in stainless steel cladding and the contribution to stress corrosion cracking in deaerated high temperature water. J. Nucl. Mater. 2021, 557, 153209. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liski, A.; Vuoriheimo, T.; Byggmästar, J.; Mizohata, K.; Heinola, K.; Ahlgren, T.; Tseng, K.-K.; Shen, T.-E.; Tsai, C.-W.; Yeh, J.-W.; et al. Solubility of Hydrogen in a WMoTaNbV High-Entropy Alloy. Materials 2024, 17, 2574. https://doi.org/10.3390/ma17112574
Liski A, Vuoriheimo T, Byggmästar J, Mizohata K, Heinola K, Ahlgren T, Tseng K-K, Shen T-E, Tsai C-W, Yeh J-W, et al. Solubility of Hydrogen in a WMoTaNbV High-Entropy Alloy. Materials. 2024; 17(11):2574. https://doi.org/10.3390/ma17112574
Chicago/Turabian StyleLiski, Anna, Tomi Vuoriheimo, Jesper Byggmästar, Kenichiro Mizohata, Kalle Heinola, Tommy Ahlgren, Ko-Kai Tseng, Ting-En Shen, Che-Wei Tsai, Jien-Wei Yeh, and et al. 2024. "Solubility of Hydrogen in a WMoTaNbV High-Entropy Alloy" Materials 17, no. 11: 2574. https://doi.org/10.3390/ma17112574
APA StyleLiski, A., Vuoriheimo, T., Byggmästar, J., Mizohata, K., Heinola, K., Ahlgren, T., Tseng, K. -K., Shen, T. -E., Tsai, C. -W., Yeh, J. -W., Nordlund, K., Djurabekova, F., & Tuomisto, F. (2024). Solubility of Hydrogen in a WMoTaNbV High-Entropy Alloy. Materials, 17(11), 2574. https://doi.org/10.3390/ma17112574