Investigation of Hydrophysical Properties and Corrosion Resistance of Modified Self-Compacting Concretes
Abstract
:1. Introduction
- -
- investigation of the influence of the self-compacting concrete composition parameters and the amount of fiber reinforcement on the frost resistance of SCC and determination of the quantitative dependencies reflecting this most important performance indicator of SCC from the point of view of practical application [15];
- -
- investigation of the influence of the self-compacting concrete composition parameters and the amount of fiber reinforcement on water absorption, water resistance, and porosity of SCC and determination of the quantitative dependencies reflecting this most important performance indicator of SCC from the point of view of practical application [16,17];
- -
- determination of the corrosion resistance of SCC in conditions of aggressive impact of saline soils of the southern regions of the Republic of Kazakhstan [18].
2. Materials and Methods
2.1. Characterization of Concrete Mix Components
2.2. Investigated Compositions of Modified Self-Compacting Concrete with Regard to the Consumption and Selection of Raw Materials
2.3. Concrete Compressive Strength
2.4. Determination of the Frost Resistance of Concrete
2.5. Determination of Water Resistance and Water Absorption of Concrete
2.6. Determination of the Corrosion Resistance of the Concrete Specimens
3. Results
3.1. Compressive Strength
- -
- an increase in the compressive strength of composition 5 (1.5% AR Premium + 0.3% polyvinylpyrrolidone 40.0 + 15% MKU-95) by 21% relative to the control composition 1 and 20% relative to composition 2 (PC + 1.5% AR Premium) was established, which is in absolute terms by 7.7 and 7.4 MPa, respectively. When a complex modifier (1.5% AR Premium + 0.3% polyvinylpyrrolidone 40.0 + 15% MKU-95) is introduced into the concrete mixture, the processes of hydrolysis and hydration of cement particles are more intensive with the formation of additional crystallization centers, which is confirmed by earlier microstructural analyses of cement stone [34].
- -
- found that, by adding basalt micro-reinforcing fiber with a fiber concentration of 0.7% of the binder weight to the proposed composition 6, a slight increase in strength by 7.2% in relation to composition 5 (without fiber) is observed. It should also be noted that, when the fiber content increases above 1% of the binder, the clumping of fibers is observed, which negatively affects the strength of concrete. The obtained results are in agreement with the work [30].
3.2. Determination of Frost Resistance of Modified Self-Compacting Concrete
- -
- a maximum weight loss up to 4.33% in the control composition 1 after 400 test cycles of alternate freezing and thawing, which exceeds the established indicators of the requirement [15] (weight loss not more than 2%).
- -
- The compositions containing the complex modifier (1.5% AR Premium + 0.3% polyvinylpyrrolidone 40.0 + 15% MKU-95) showed high frost resistance characteristics. After 600 cycles of tests, the mass loss in compositions 5 and 6 was 1.9% and 1.6%, which confirms the sufficient frost resistance reserve of the proposed compositions of modified self-compacting concrete.
3.3. Determination of Water Resistance and Water Absorption of Concrete
3.4. Determination of the Corrosion Resistance
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kalashnikov, V.I. Evolution of compositions development and change of concrete strength. Concretes of the present and the future. Constr. Mater. 2016, 1–2, 96–103. Available online: https://journal-cm.ru/index.php/ru/zhurnaly/2016/vse-stati-za-2016/evolyutsiya-razvitiya-sostavov-i-izmenenie-prochnosti-betonov-betony-nastoyashchego-i-budushchego-chast-1-izmenenie-sostavov-i-prochnosti-betonov (accessed on 2 May 2016).
- Yahiaoui, W.; Kenai, S.; Menadi, B.; Kadri, E.H. Durability of self compacted concrete containing slag in hot climate. Adv. Concr. Constr. 2017, 5, 271–288. [Google Scholar] [CrossRef]
- Benyamina, S.; Menadi, B.; Bernard, S.K.; Kenai, S. Performance of self-compacting concrete with manufactured crushed sand. Adv. Concr. Constr. 2019, 7, 87–96. [Google Scholar] [CrossRef]
- Utepov, Y.; Akhmetov, D.; Akhmatshaeva, I. Effect of fine fillers from industrial waste and various chemical additives on the placeability of self-compacting concrete. Comput. Concr. 2020, 25, 59–65. [Google Scholar] [CrossRef]
- Specification and Guidelines for Self-Compacting Concrete, EFNARC 2002, Norfolk, UK. Available online: https://wwwp.feb.unesp.br/pbastos/c.especiais/Efnarc.pdf (accessed on 1 February 2002).
- Bandurin, M.A.; Volosukhin, V.A. Operational Monitoring of Flume Canals of Irrigation Systems. Training Manual, 2nd ed.; Trubilin Kuban State Agrarian University: Krasnodar, Russia, 2022; Available online: https://www.elibrary.ru/item.asp?id=49507107 (accessed on 5 May 2022).
- Abd Elmoaty, A.E.M. Mechanical properties and corrosion resistance of concrete modified with granite dust. Constr. Build. Mater. 2013, 47, 743–752. [Google Scholar] [CrossRef]
- Akhmetov, D.A.; Aniskin, A.; Utepov, Y.B.; Root, Y.N.; Kozina, G. Determination of Optimal Fibre Reinforcement Parameters for Self-Compacting Concretes. Teh. Vjesn. 2020, 27, 1982–1989. Available online: https://hrcak.srce.hr/248250 (accessed on 1 December 2020). [CrossRef]
- Tkach, E.V.; Semenov, V.S.; Tkach, S.A.; Rozovskaya, T.A. Highly effective water-repellent concrete with improved physical and technical properties. Procedia Eng. 2015, 111, 763–769. [Google Scholar] [CrossRef]
- Bazhenov, Y.M.; Fomichev, V.T.; Erofeev, V.T.; Fedosov, S.V.; Matvievskiy, A.A.; Osipov, A.K.; Emelyanov. Ways of Development of Building Material Science: New Concretes. Concr. Technol. 2012, 3–4, 39–42. Available online: https://www.elibrary.ru/item.asp?id=22457451 (accessed on 5 May 2024).
- Bazhenov, Y.M.; Demyanova, V.S.; Kalashnikov, V.I. Modified High Quality Concretes; ASV Publishing House: Moscow, Russia, 2006; 368p, Available online: https://rusneb.ru/catalog/000199_000009_003034382/ (accessed on 5 May 2024).
- GOST 24211-2008; Additives for Concrete and Mortars. General Technical Conditions. Standardinform: Moscow, Russia, 2010; 16p.
- Rakhimbaev, S.M.; Tolypina, N.M. Increase of Corrosion Resistance of Concrete by Rational Choice of Binder and Aggregates; Belgrade State Technical University: Belgorod, Russia, 2015; Available online: https://www.elibrary.ru/item.asp?id=26580490 (accessed on 5 May 2024).
- Moskvin, B.M.; Ivanov, F.M.; Alekseev, S.N.; Guzeyev, E.A. Corrosion of Concrete and Reinforced Concrete, Methods of Their Protection. Moskvin, V.M., Ed.; Stroyizdat: Moscow, Russia, 1980; Available online: https://books.totalarch.com/corrosion_of_reinforced_concrete_and_methods_protection (accessed on 5 May 2024).
- GOST 10060-2012; Concretes. Methods of Determination of Frost Resistance. Standardinform: Moscow, Russia, 2018; 33p.
- GOST 12730.5-2018; Concretes. Methods of Determination of Water Resistance. Standardinform: Moscow, Russia, 2019; 19p.
- GOST 12730.3-2020; Concretes. Method for Determination of Water Absorption. Standardinform: Moscow, Russia, 2021; 3p.
- GOST 27677-88; Corrosion Protection in Construction. Concretes. General Requirements for Testing. Standards Publishing House: Moscow, Russia, 1988; 6p.
- GOST 31108-2020; General Construction Cements. Technical Conditions. Standardinform: Moscow, Russia, 2022; 14p.
- EN 196-2:2013; Method of Testing Cement—Part 2: Chemical Analysis of Cement. SIST: Ljubljana, Slovenia, 2013; p. 73.
- GOST 8736-2014; Sand for Construction Works. Specifications. Available online: https://sciencealpha.com/gost-8736-2014-sand-for-construction-works-technical-specifications-with-amendment (accessed on 5 May 2024).
- GOST 8735-88; Sand for Construction Works. Test Methods. Standardinform: Moscow, Russia, 2018; 25p.
- GOST 8267-93; Crushed Stone and Gravel from Dense Rocks for Construction Works. Technical Conditions. Standardinform: Moscow, Russia, 2018; 11p.
- EN 12620:2013; Aggregates for Concrete. SIST: Ljubljana, Slovenia, 2013; p. 54. Available online: https://ru.scribd.com/document/397483151/BS-en-12620-2013-Aggregates-for-Concrete (accessed on 5 May 2024).
- GOST 30459-2008; Admixtures for Concretes and Mortars. Determination and Estimate of the Efficiency. Available online: https://protect.gost.ru/document.aspx?control=7&id=175893 (accessed on 5 May 2024).
- Technical Conditions 9365-002-46270704-2001. Polyvinylpyrrolidone High Molecular Weight. Available online: https://e-ecolog.ru/crc/78.01.06.936.%D0%A2.003880.10.08?utm_referrer=https%3A%2F%2Fwww.google.com%2F (accessed on 5 May 2024).
- EN 13263-1:2005+A1:2009; Silica Fume for Concrete—Part 1: Definitions, Requirements and Conformity Criteria. SIST: Ljubljana, Slovenia, 2009; p. 23. Available online: https://www.en-standard.eu/une-en-13263-1-2006-a1-2009-silica-fume-for-concrete-part-1-definitions-requirements-and-conformity-criteria/ (accessed on 5 May 2024).
- Akhmetov, D.A.; Pukharenko, Y.V.; Vatin, N.I.; Akhazhanov, S.B.; Akhmetov, A.R.; Jetpisbayeva, A.Z.; Utepov, Y.B. The Effect of Low-Modulus Plastic Fiber on the Physical and Technical Characteristics of Modified Heavy Concretes Based on Polycarboxylates and Microsilica. Materials 2022, 15, 2648. [Google Scholar] [CrossRef]
- Technical Conditions 5952-002-13307094-08. Chopped Basalt Fibre; Limited Liability Company “Stone Age”: Moscow, Russia, 2008; 21p, Available online: https://e-ecolog.ru/crc/50.99.03.595.%D0%A2.004540.04.09?utm_referrer=https%3A%2F%2Fwww.google.com%2F (accessed on 5 May 2024).
- Akhmetov, D.; Akhazhanov, S.; Jetpisbayeva, A.; Pukharenko, Y.; Root, Y.; Utepov, Y.; Akhmetov, A. Effect of low-modulus polypropylene fiber on physical and mechanical properties of self-compacting concrete. Case Stud. Constr. Mater. 2022, 16, e00814. [Google Scholar] [CrossRef]
- GOST 10180-2012; Concretes. Methods of Determination of Strength by Control Samples. Standardinform: Moscow, Russia, 2018; 31p.
- GOST 23732-2011; Water for Concrete and Mortars. Technical Conditions. Standardinform: Moscow, Russia, 2012; 11p.
- Tolypina, N.M. Increase of Corrosion Resistance of Concrete by Rational Choice of Binder and Aggregates; BSTU: Belgorod, Russia, 2014; 354p, Available online: https://www.dissercat.com/content/povyshenie-korrozionnoi-stoikosti-betonov-putem-ratsionalnogo-vybora-vyazhushchego-i-zapolni (accessed on 5 May 2024).
- Abdraimov, I.; Kopzhassarov, B.; Kolesnikova, I.; Akhmetov, D.A.; Madiyarova, I.; Utepov, Y. Frost-Resistant Rapid Hardening Concretes. Materials 2023, 16, 3191. [Google Scholar] [CrossRef]
- Zhang, H. Building Materials in Civil Engineering; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9781845699567. Available online: https://www.researchgate.net/publication/296101365_Building_Materials_in_Civil_Engineering (accessed on 5 May 2024).
- Soloviev, V.I.; Tkach, E.V.; Serova, R.F.; Tkach, S.A.; Toimbayeva, B.M.; Seydinova, G.A. Study of porosity of cement stone modified with complex organomineral modifiers. Fundam. Res. 2014, 8, 590–595. Available online: https://fundamental-research.ru/ru/article/view?id=34599 (accessed on 5 May 2024).
- Zhao, Y.; Ding, P.; Ba, C.; Tang, A.; Song, N.; Liu, Y.; Shi, L. Preparation of TIO2 coated silicate micro-spheres for enhancing the light diffusion property of polycarbonate composites. Displays 2014, 35, 220–226. [Google Scholar] [CrossRef]
- Yakovlev, G.I.; Pervushin, G.N.; Korzhenko, A.; Burianov, A.F.; Pudov, I.A.; Lushnikova, A.A. Modification of cement concrete by multilayer carbon nanotubes. Stroit. Mater. 2011, 2, 47–51. Available online: https://cyberleninka.ru/article/n/modifikatsiya-tsementnyh-betonov-mnogosloynymi-uglerodnymi-nanotrubkami (accessed on 5 May 2024).
- Grishina, A.N.; Korolev, E.V.; Mikheev, A.V.; Gladkikh, V.A. Moisture deformations of concrete subjected to alkaline corrosion. Experimental results. Bull. Civ. Eng. 2020, 6, 140–148. Available online: https://vestnik.spbgasu.ru/article/vlazhnostnye-deformacii-betona-podverzhennogo-shchelochnoy-korrozii-eksperimentalnye (accessed on 5 May 2024).
- Rosenthal, N.K.; Stepanova, V.F.; Chechniy, G.V. Concretes of high corrosion resistance and rationing of their characteristics. Build. Mater. Equip. Technol. XXI Century 2017, 3–4, 14–19. Available online: http://stroymat21.ru/pdf/2017_03/14-19.pdf (accessed on 5 May 2024).
- Vipulanandan, C.; Dharmarajan, N. Analysis of Fracture Parameters of Polymer Concrete. ACI Mater. J. 1989, 86, 383–393. [Google Scholar] [CrossRef]
- Inozemtsev, A.S.; Korolev, E.V.; Zyong, T.K. Rheological features of cement-mineral systems plasticized with polycarboxylate plasticizer. Reg. Archit. Constr. 2019, 3, 24–34. Available online: https://www.elibrary.ru/item.asp?id=41330285 (accessed on 5 May 2024).
- Afroz, M.; Patnaikuni, I.; Venkatesan, S. Chemical resistance and performance of modified basalt fiber in concrete environment. Constr. Build. Mater. 2017, 154, 191–203. [Google Scholar] [CrossRef]
- Tkach, E.V.; Sadchikova, Y.S. Improvement of the operational properties of concrete for hydromeliorative construction. Constr. Equip. Bull. Russ. 2019, 4, 64–65. Available online: http://bstmag.ru/archive (accessed on 5 May 2024).
- Lukuttsova, N.P.; Pykin, A.A.; Ustinov, A.G.; Kondrik, A.S. Corrosion resistance of concrete with the addition of carbon-silica nanomodifier. Constr. Reconstr. 2012, 5, 62–67. Available online: https://www.elibrary.ru/item.asp?id=18759251 (accessed on 5 May 2024).
Indicator | Indicator Value |
---|---|
Appearance | Homogeneous light yellow-colored liquid |
Density at 25 °C, kg/m3 | 1030–1060 |
Hydrogen index, pH | 3.7 |
Chloride content, not more (%) | 0.1 |
Condensed microsilica ST ORG 46976-1901-21-002-2014 (ST ORG—Standard of organization) | Mark | Batch No. | Mass Ratio, % | ||||||
MKU | 27 | SiO2 | Fe2O3 | Al2O3 | CaO | pH | q, g/cm3 | Other impurities | |
96.91 | 0.07 | 0.24 | 0.46 | 7.89 | 0.44 | 2.77 |
Indicator | Characteristics |
---|---|
Basalt Fiber | |
Melting point, °C | 1450 |
Length of section, mm | 12.67 |
Resistance to alkalis and corrosion | High |
Elementary fiber diameter, mcm | 16.19 |
Elongation at break, % | 1.4–3.6 |
Tensile strength, R, MPa∙103 | 2.8–3.4 |
Density, g/cm3 | 2.63 |
Modulus of elasticity Fe, MPa∙103 | 100–130 |
Materials | Composition and Consumption per 1 m3 of Concrete Mix, kg/m3 | |||||
---|---|---|---|---|---|---|
Composition 1 (Control.) | Composition 2 | Composition 3 | Composition 4 | Composition 5 | Composition 6 | |
Cement I 32.5H | 460 | 460 | 460 | 460 | 400 | 400 |
Microsilica MKU-95 (15%) | - | - | - | - | 60 | 60 |
Water | 210 | 210 | 210 | 210 | 210 | 210 |
Granite crushed stone (5–10) mm | 730 | 730 | 730 | 730 | 730 | 730 |
Granite crushed stone (10–20) mm | 170 | 170 | 170 | 170 | 170 | 170 |
Sand | 820 | 820 | 820 | 820 | 820 | 820 |
Hyperplasticizer “AR Premium” (1.5%) | - | 6.9 | - | 6.9 | 6.9 | 6.9 |
Polyvinylpyrrolidone 40.0 (0.3%) | - | - | 1.38 | 1.38 | 1.38 | 1.38 |
Basalt fiber (BF) (0.7%) | - | - | - | - | - | 3.22 |
Flowability (mm) | 560 | 720 | 570 | 700 | 690 | 680 |
Sample Marking | No. of Sample | Density, kg/m3 | Compressive Strength, MPa | |
---|---|---|---|---|
Rcompr. | Rcompr., Average | |||
Composition 1 Control Zavodskoy (Class C30/35) | 1 | 2377 | 35.5 | 36.4 |
2 | 2379 | 36.7 | ||
3 | 2395 | 37.1 | ||
Composition 2 1.5% AR Premium | 1 | 2368 | 36.2 | 36.7 |
2 | 2374 | 36.6 | ||
3 | 2382 | 37.2 | ||
Composition 3 0.3% Polyvinylpyrrolidone 40.0 | 1 | 2394 | 33.4 | 33.7 |
2 | 2395 | 34.1 | ||
3 | 2399 | 33.6 | ||
Composition 4 1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 | 1 | 2401 | 37.5 | 37.1 |
2 | 2397 | 37.0 | ||
3 | 2393 | 36.8 | ||
Composition 5 (1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 + 15% MKU-95) | 1 | 2400 | 44.0 | 44.1 |
2 | 2401 | 44.1 | ||
3 | 2402 | 44.2 | ||
Composition 6 (1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 + 15% MKU-95) + 0.7% basalt fiber | 1 | 2401 | 47.9 | 47.3 |
2 | 2400 | 46.9 | ||
3 | 2396 | 47.1 |
Sample Marking | Sample Weight Loss, %, after Cycles | Kfrost. after Cycles | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
200 | 300 | 350 | 400 | 500 | 600 | 200 | 300 | 350 | 400 | 500 | 600 | |
Composition 1 Control Zavodskoy (Class C30/35) | 1.19 | 2.17 | 3.16 | 4.33 | - | - | 0.95 | 0.9 | 0.77 | 0.68 | - | - |
Composition 2 1.5% AR Premium | 0.46 | 1.13 | 1.19 | 2.1 | 3.7 | 5.31 | 1.01 | 0.95 | 0.93 | 0.91 | 0.83 | 0.81 |
Composition 3 0.3% Polyvinylpyrrolidone 40.0 | 0.33 | 1.08 | 1.55 | 2.01 | 3.3 | 4.84 | 1.03 | 0.99 | 0.96 | 0.95 | 0.87 | 0.84 |
Composition 4 1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 | 0.24 | 0.99 | 1.61 | 1.92 | 2.8 | 3.9 | 1.04 | 1.0 | 0.98 | 0.97 | 0.95 | 0.89 |
Composition 5 1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 + 15% MKU-95 | 0.11 | 0.95 | 1.1 | 1.5 | 1.7 | 1.9 | 1.06 | 1.03 | 0.99 | 0.97 | 0.96 | 0.92 |
Composition 6 (1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 + 15% MKU-95) + 0.7% basalt fiber | 0.09 | 0.29 | 0.27 | 0.42 | 1.4 | 1.6 | 1.11 | 1.09 | 1.03 | 1.0 | 0.98 | 0.94 |
Sample Marking | Water Absorption by Weight, % | Water Resistance, MPa | Concrete Waterproof Mark |
---|---|---|---|
Composition 1 Control Zavodskoy (Class C30/35) | 4.6 | 0.6 | W6 |
Composition 2 1.5% AR Premium | 2.9 | 0.8 | W8 |
Composition 3 0.3% Polyvinylpyrrolidone 40.0 | 2.4 | 1.0 | W10 |
Composition 4 1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 | 2.2 | 1.2 | W12 |
Composition 5 (1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 + 15% MKU-95) | 2.1 | 1.4 | W14 |
Composition 6 (1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 + 15% MKU-95) + 0.7% basalt fiber | 2.0 | 1.4 | W14 |
Sample Marking | Characteristics | Type and Concentration of Aggressive Medium | |||
---|---|---|---|---|---|
NaCl Solution 3% | Distilled Water | HCl 0.01 mol/L | Na2SO4 Solution 5% | ||
Composition 1 Control Zavodskoy (Class C30/35) | av., % | 0.133 | 0.065 | 0.233 | 0.134 |
av., % | 0.242 | 0.121 | 0.539 | 0.211 | |
av., % | 0.254 | 0.129 | 0.611 | 0.288 | |
Composition 2 1.5% AR Premium | av., % | 0.111 | 0.055 | 0.185 | 0.137 |
av., % | 0.185 | 0.101 | 0.391 | 0.223 | |
av., % | 0.18 | 0.113 | 0.416 | 0.274 | |
Composition 3 0.3% Polyvinylpyrrolidone 40.0 | av., % | 0.101 | 0.056 | 0.184 | 0.149 |
av., % | 0.173 | 0.095 | 0.375 | 0.195 | |
av., % | 0.164 | 0.101 | 0.409 | 0.269 | |
Composition 4 1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 | av., % | 0.1 | 0.047 | 0.12 | 0.095 |
av., % | 0.16 | 0.082 | 0.29 | 0.141 | |
av., % | 0.105 | 0.081 | 0.27 | 0.172 | |
Composition 5 (1.5% AR Premium + 0.3% Polyvinylpyrrolidone 40.0 + 15% MKU-95) | av., % | 0.097 | 0.05 | 0.122 | 0.093 |
av., % | 0.156 | 0.074 | 0.241 | 0.145 | |
av., % | 0.137 | 0.075 | 0.22 | 0.165 | |
Composition 6 (1.5% AR Premium +0.3% Polyvinylpyrrolidone 40.0+15% MKU-95)+ 0.7% basalt fiber | av., % | 0.091 | 0.051 | 0.125 | 0.08 |
av., % | 0.144 | 0.062 | 0.237 | 0.13 | |
av., % | 0.131 | 0.065 | 0.21 | 0.153 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhagifarov, A.M.; Akhmetov, D.A.; Suleyev, D.K.; Zhumadilova, Z.O.; Begentayev, M.M.; Pukharenko, Y.V. Investigation of Hydrophysical Properties and Corrosion Resistance of Modified Self-Compacting Concretes. Materials 2024, 17, 2605. https://doi.org/10.3390/ma17112605
Zhagifarov AM, Akhmetov DA, Suleyev DK, Zhumadilova ZO, Begentayev MM, Pukharenko YV. Investigation of Hydrophysical Properties and Corrosion Resistance of Modified Self-Compacting Concretes. Materials. 2024; 17(11):2605. https://doi.org/10.3390/ma17112605
Chicago/Turabian StyleZhagifarov, Adlet M., Daniyar A. Akhmetov, Dossym K. Suleyev, Zhanar O. Zhumadilova, Meiram M. Begentayev, and Yuryi V. Pukharenko. 2024. "Investigation of Hydrophysical Properties and Corrosion Resistance of Modified Self-Compacting Concretes" Materials 17, no. 11: 2605. https://doi.org/10.3390/ma17112605
APA StyleZhagifarov, A. M., Akhmetov, D. A., Suleyev, D. K., Zhumadilova, Z. O., Begentayev, M. M., & Pukharenko, Y. V. (2024). Investigation of Hydrophysical Properties and Corrosion Resistance of Modified Self-Compacting Concretes. Materials, 17(11), 2605. https://doi.org/10.3390/ma17112605