Investigating the High-Temperature Bonding Performance of Refractory Castables with Ribbed Stainless-Steel Bars
Abstract
:1. Introduction
2. Materials and Methods
2.1. Refractory Materials
2.2. Steel Reinforcement
2.3. Mechanical Tests
2.4. Material Analysis
3. Results and Discussion
3.1. Mechanical Resistance of the Bar Steel
3.2. The CCS Effect on the Pull-Out Bonding Performance without Heat Treatment
- The tests resulted in the pull-out failure of all samples. This outcome supports the representativeness of the testing parameters to investigate the concrete resistance mechanisms. This observation aligns with the findings of the previous study [7] and results from the relatively smooth shape of the surface of the stainless-steel ribbed bars (Section 2.2) when compared to typical construction steel reinforcement [7].
- All pull-out samples show comparable ultimate load-bearing capacities of the bond despite differences in compressive strength (Figure 3a).
- Figure 3b demonstrates a significant scatter and differences in the shape of the diagrams, which cannot determine a quantitative measure for comparison purposes. This study employs the pull-out deformation energy, i.e., the area beneath the load-deformation diagram, Equation (1), to provide a comparative analysis. The 15 mm displacement ul terminates the deformation assessment area to make the energy estimations equivalent. The vertical dashed line in Figure 3b highlights this limit.
- The pull-out test results show significantly different bond performance despite the nominally identical strengths of the CC, MCC, and LCC refractory materials (Figure 3a). This outcome suggests that the bond resistance is predominantly affected by the chemical composition of the materials rather than the CCS.
- Notwithstanding a substantial increase in strength (Figure 3a), the LCB samples do not demonstrate an exceptional bond performance compared to other castables. This observation strengthens the impression about the materials-based nature of the bonding resistance mechanisms. However, because of the unsatisfying bond performance, the LCB samples were excluded from further analysis of the impact of temperature on bonding resistance.
3.3. The Temperature Effect on the Bond Performance of Different Refractory Materials
3.4. The Castable Structure Transformation Analysis
3.5. The Essential Contribution of This Study to the Research Field
- The austenitic stainless 304 steel bars ensure a reliable bond with all the considered refractory materials and can be used as the primary reinforcement in the developed protective structures.
- The CCS of the CC, MCC, and LCC samples may be identical in unheated conditions. However, the pull-out tests reveal that these castables have significantly different bond performances, indicating that the mineral composition may impact bond resistance more than compressive strength.
- The LCC samples treated at 800 °C and 1000 °C show substantial transformation of the deformation energy and the CCS ratio, which is not characteristic of the CC and MCC specimens. Comparative SEM analysis of the LCC and MCC samples highlights significant microstructural changes in the LCC after the 1000 °C treatment. The XRD analysis identifies opposite mullite and corundum concentration tendencies in the LCC and MCC materials. Although the latter minerals may increase strength, experiments show that the mullite and corundum concentrations impact bond performance more significantly than the CCS.
4. Conclusions
- The austenitic stainless 304 steel bars ensure a reliable bond with all the considered refractory materials. They can be used as the primary reinforcement in building protection against fire and explosions by developing ultra-high-performance structures employing refractory castables.
- The hypothesized straightforward correlation between the cold compressive strength and the pull-out deformation energy does not exist, and the mineral composition may impact bond resistance more than compressive strength. This result describes the object for further research and optimization.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhu, Y.; Hussein, H.; Kumar, A.; Chen, G. A review: Material and structural properties of UHPC at elevated temperatures or fire conditions. Cem. Concr. Compos. 2021, 123, 104212. [Google Scholar] [CrossRef]
- Xu, L.; Zhang, D.; Liu, Y.; Chen, M.; Wang, N. Comparison of microstructure, thermo-mechanical property and corrosion resistance of bauxite-corundum refractory castables reinforced by two approaches. Ceram. Int. 2021, 47, 13660–13668. [Google Scholar] [CrossRef]
- Xu, L.; Liu, Y.; Chen, M.; Wang, N. An accurate correlation between high-temperature performance and cement content of the high-alumina refractory castables. Ceram. Int. 2022, 48, 22560–22566. [Google Scholar] [CrossRef]
- Khan, M.; Lao, J.; Riaz Ahmad, M.; Kai, M.; Dai, J. The role of calcium aluminate cement in developing an efficient ultra-high performance concrete resistant to explosive spalling under high temperatures. Constr. Build. Mater. 2023, 384, 131469. [Google Scholar] [CrossRef]
- Yang, S.; Xiao, G.; Ding, D.; Yu, X.; Guan, L.; Gao, J. Improved corrosion resistance of Al2O3-SiC-C castables through in situ carbon containing aluminate cement as binder. Int. J. Appl. Ceram. Technol. 2020, 17, 1044–1051. [Google Scholar] [CrossRef]
- Suvorov, D.S.; Khaidarov, B.B.; Lysov, D.V.; Khaidarov, T.B.; Kuznetsov, D.V. Effect of adding nanosize SiO2 on physicomechanical properties and durability of a refractory component industrial batch. Refract. Ind. Ceram. 2023, 63, 522–526. [Google Scholar] [CrossRef]
- Plioplys, L.; Kudžma, A.; Sokolov, A.; Antonovič, V.; Gribniak, V. Bond behavior of stainless-steel and ordinary reinforcement bars in refractory castables under elevated temperatures. J. Compos. Sci. 2023, 7, 485. [Google Scholar] [CrossRef]
- Shirani, K.; Reisi, M.; Savadkoohi, M.S. Eco-friendly high-strength refractory concrete containing calcium alumina cement by reusing granite waste as aggregate. Int. J. Concr. Struct. Mater. 2021, 15, 48. [Google Scholar] [CrossRef]
- Lei, C.; Xiao, G.; Ding, D.; Chen, J.; Zang, Y. Microstructural evolution and properties enhancement of SiC refractory castables bonded with the special CNFs/calcium aluminate cement. Ceram. Int. 2023, 49, 25716–25727. [Google Scholar] [CrossRef]
- Lei, C.; Ding, D.; Xiao, G.; Wang, J.; Chen, J.; Zang, Y.; Shan, J. Catalytic carbon-bed sintering of CNTs/calcium aluminate cement and its effects on thermal mechanical properties of refractory castables. Ceram. Int. 2023, 49, 33780–33792. [Google Scholar] [CrossRef]
- Antonovich (Antonovič), V.; Goberis, S.; Pundene, I.; Stonis, R. A new generation of deflocculants and microsilica used to modify the properties of a conventional refractory castable based on a chamotte filler. Refract. Ind. Ceram. 2006, 47, 178–182. [Google Scholar] [CrossRef]
- Tchamba, A.B.; Mbessa, M.; Langollo Yannick, T.; Waida, S.; Elimbi, A.; Melo, U.C.; Bier, T.A. Reactivity of calcium di-aluminate (CaAl4O7) refractory cement with lithium carbonate (Li2CO3) admixture. J. Asian Ceram. Soc. 2020, 8, 223–233. [Google Scholar] [CrossRef]
- Şengül, K.; Erdoğan, S.T. Influence of ground perlite on the hydration and strength development of calcium aluminate cement mortars. Constr. Build. Mater. 2021, 266, 120943. [Google Scholar] [CrossRef]
- Peng, H.; Myhre, B. Improved explosion resistance of low cement refractory castables using drying agents. Int. J. Ceram. Eng. Sci. 2022, 4, 84–91. [Google Scholar] [CrossRef]
- Chen, S. Review of heat resistant concrete. J. Phys. IOP Conf. Ser. 2023, 2608, 012014. [Google Scholar] [CrossRef]
- Hewlett, P.; Liska, M. Lea’s Chemistry of Cement and Concrete, 5th ed.; Butterworth-Heinemann: Oxford, UK, 2019. [Google Scholar] [CrossRef]
- Liao, Y.; Wang, S.; Wang, K.; Al Qunaynah, S.; Wan, S.; Yuan, Z.; Xu, P.; Tang, S. A study on the hydration of calcium aluminate cement pastes containing silica fume using non-contact electrical resistivity measurement. J. Mater. Res. Technol. 2023, 24, 8135–8149. [Google Scholar] [CrossRef]
- Mocciaro, A.; Cimas, A.; Rendtorff, N.M.; Scian, A.N. Mullite macro-needles for reinforcement of refractory castables. Cerâmica 2022, 68, 420–426. [Google Scholar] [CrossRef]
- Jin, S.H.; Yang, H.J.; Hwang, J.P.; Ann, K.Y. Corrosion behaviour of steel in CAC-mixed concrete containing different concentrations of chloride. Constr. Build. Mater. 2016, 110, 227–234. [Google Scholar] [CrossRef]
- Ahmed, A.A.; Shakouri, M.; Trejo, D.; Pavan Vaddey, N. Effect of curing temperature and water-to-cement ratio on corrosion of steel in calcium aluminate cement concrete. Constr. Build. Mater. 2022, 350, 128875. [Google Scholar] [CrossRef]
- Sengupta, P.; Sengupta, P. Manufacturing and properties of refractories. In Refractories for the Chemical Industries; Springer: Cham, Switzerland, 2020; pp. 43–84. [Google Scholar] [CrossRef]
- Bareiro, W.G.; De Andrade Silva, F.; Sotelino, E.D. Thermo-mechanical behavior of stainless steel fiber reinforced refractory concrete: Experimental and numerical analysis. Constr. Build. Mater. 2020, 240, 117881. [Google Scholar] [CrossRef]
- Shang, J.Z.; Liu, B.L.; Shi, K.; Liu, Y.; Mi, Y.H.; Fan, W.H.; He, Y.X. Effect of stainless steel fibers on properties of MgO–C refractories. J. Iron Steel Res. Int. 2023, 30, 2186–2193. [Google Scholar] [CrossRef]
- Andión, L.; Garcés, P.; Cases, F.; Andreu, C.; Vazquez, J. Metallic corrosion of steels embedded in calcium aluminate cement mortars. Cem. Concr. Res. 2001, 31, 1263–1269. [Google Scholar] [CrossRef]
- Abolhasani, A.; Shakouri, M.; Dehestani, M.; Samali, B.; Banihashemi, S. A comprehensive evaluation of fracture toughness, fracture energy, flexural strength and microstructure of calcium aluminate cement concrete exposed to high temperatures. Eng. Fract. Mech. 2022, 261, 108221. [Google Scholar] [CrossRef]
- Abadel, A.A.; Abbas, H.; Alshaikh, I.M.; Sennah, K.; Tuladhar, R.; Altheeb, A.; Alamri, M. Experimental study on the effects of external strengthening and elevated temperature on the shear behavior of ultra-high-performance fiber-reinforced concrete deep beams. Structures 2023, 49, 943–957. [Google Scholar] [CrossRef]
- Chu, S.; Kwan, A. A new method for pull out test of reinforcing bars in plain and fibre reinforced concrete. Eng. Struct. 2018, 164, 82–91. [Google Scholar] [CrossRef]
- ASTM C860-15(2019); Standard Test Method for Determining the Consistency of Refractory Castable Using the Ball-In-Hand Test. ASTM: West Conshohocken, PA, USA, 2019. [CrossRef]
- ISO 15630-1:2019; Steel for the Reinforcement and Prestressing of Concrete—Test methods—Part 1: Reinforcing Bars, Rods and Wire. ISO: Geneva, Switzerland, 2024.
- LST EN ISO 1927-6:2013; Monolithic (Unshaped) Refractory Products—Part 6: Measurement of Physical Properties. CEN: Brussels, Belgium, 2013.
- LST EN ISO 1927-5:2013; Unshaped Refractory Materials—Part 5: Preparation and Treatment of Test Pieces. European Committee for Standardization (CEN): Brussels, Belgium, 2013.
- Gribniak, V.; Bacinskas, D.; Kaklauskas, G. Numerical simulation strategy of bearing reinforced concrete tunnel members in fire. Balt. J. Road Bridge Eng. 2006, 1, 5–9. [Google Scholar]
- Zhang, Z.; Khong, J.C.; Koe, B.; Luo, S.; Huang, S.; Qin, L.; Cipiccia, S.; Batey, D.; Bodey, A.J.; Rau, C.; et al. Multiscale characterization of the 3D network structure of metal carbides in a Ni superalloy by synchrotron X-ray microtomography and ptychography. Scr. Mater. 2021, 193, 71–76. [Google Scholar] [CrossRef]
- Kudžma, A.; Plioplys, L.; Antonovič, V.; Stonys, R.; Gribniak, V. Curing temperatures effect on explosive spalling in alumina cement-based concretes. Proc. Int. Struct. Eng. Constr. 2022, 9, MAT-27. [Google Scholar] [CrossRef]
- Tang, W.; Zhu, L.; Xia, C.; Wang, Q.; Mu, Y.; Ye, G. Effects of pre-calcining temperature of andalusite on the properties of mullite-corundum refractories. J. Aust. Ceram. Soc. 2021, 57, 1343–1349. [Google Scholar] [CrossRef]
- Pan, L.; He, Z.; Li, Y.; Zhu, T.; Wang, Q.; Li, B. Effects of cement content on the microstructural evolution and mechanical properties of cement-bonded corundum castables. Ceram. Int. 2020, 46, 4634–4642. [Google Scholar] [CrossRef]
Mix | CAC | QS | MS | RA | Fire Clay BOS 145 | G50 | Bauxite | FS20 | FS30 | NT | W | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
G70 | I40 | 0–0.14 mm | 0–5 mm | 0–1 mm | 1–3 mm | |||||||||
MCC | 12 | – | 2.5 | 3 | 5 | 12 | 65.5 | – | – | – | 0.1 | – | 0.1 | 7.5 |
LCC | 7 | – | 2.5 | 5 | 25 | – | 60.5 | – | – | – | 0.1 | – | 0.1 | 6.5 |
LCB | 7 | – | – | 5 | 25 | – | – | 21 | 21 | 21 | 0.1 | – | 0.1 | 6.5 |
CC | – | 25 | 2.5 | 2.5 | – | 10 | 60.0 | – | – | – | – | 0.1 | – | 8.0 |
Constituent | Gorkal 70 (G70) | Istra 40 (I40) |
---|---|---|
Al2O3 | 69–71 | 37–42 |
CaO | 28–30 | 36–40 |
Fe2O3 | <0.3 | 13–18 |
SiO2 | <0.5 | ≤6 |
MgO | – | <1.5 |
SO3 | – | <0.4 |
Na2O + K2O | <0.5 | – |
Constituent | MCC | LCC | CC |
---|---|---|---|
Na2O | 0.221 | 0.209 | 0.163 |
MgO | 0.835 | 0.581 | 0.941 |
Al2O3 | 49.8 | 56.9 | 41.4 |
SiO2 | 37.0 | 32.4 | 34.6 |
K2O | 0.699 | 0.645 | 0.612 |
CaO | 4.35 | 2.73 | 10.8 |
TiO2 | 1.17 | 1.06 | 1.46 |
Fe2O3 | 1.54 | 1.24 | 5.22 |
Name | Anorthite 28.02° | Mullite 26.26–30° | Gehlenite 31.38–42° | Corundum 35.15–18° | Tridymite 21.68–70° | Quartz 26.62–66° | TiO2 25.32–34° | ∑Q | ∑N |
---|---|---|---|---|---|---|---|---|---|
MCC | 0.000 | 370.0 | 26.60 | 400.0 | 309.0 | 162.0 | 440.0 | 471.0 | 796.6 |
LCC | 40.00 | 295.0 | 0.000 | 390.0 | 217.0 | 300.5 | 440.0 | 517.5 | 725.0 |
CC | 0.000 | 367.0 | 37.60 | 238.0 | 230.0 | 249.0 | 440.0 | 479.0 | 642.6 |
Name | Anorthite 28.02° | Mullite 26.26–30° | Gehlenite 31.38–42° | Corundum 35.15–18° | Tridymite 21.68–70° | Quartz 26.62–66° | TiO2 25.32–34° | ∑Q | ∑N |
---|---|---|---|---|---|---|---|---|---|
MCC | 59.00 | 361.5 | 37.00 | 634.0 | 255.5 | 181.0 | 440.0 | 436.5 | 1092 |
LCC | 0.000 | 296.5 | 0.000 | 495.5 | 218.0 | 370.0 | 440.0 | 588.0 | 792.0 |
CC | 44.00 | 351.0 | 135.0 | 254.0 | 248.0 | 196.0 | 440.0 | 444.0 | 784.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Plioplys, L.; Antonovič, V.; Boris, R.; Kudžma, A.; Gribniak, V. Investigating the High-Temperature Bonding Performance of Refractory Castables with Ribbed Stainless-Steel Bars. Materials 2024, 17, 2916. https://doi.org/10.3390/ma17122916
Plioplys L, Antonovič V, Boris R, Kudžma A, Gribniak V. Investigating the High-Temperature Bonding Performance of Refractory Castables with Ribbed Stainless-Steel Bars. Materials. 2024; 17(12):2916. https://doi.org/10.3390/ma17122916
Chicago/Turabian StylePlioplys, Linas, Valentin Antonovič, Renata Boris, Andrius Kudžma, and Viktor Gribniak. 2024. "Investigating the High-Temperature Bonding Performance of Refractory Castables with Ribbed Stainless-Steel Bars" Materials 17, no. 12: 2916. https://doi.org/10.3390/ma17122916
APA StylePlioplys, L., Antonovič, V., Boris, R., Kudžma, A., & Gribniak, V. (2024). Investigating the High-Temperature Bonding Performance of Refractory Castables with Ribbed Stainless-Steel Bars. Materials, 17(12), 2916. https://doi.org/10.3390/ma17122916