Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of High-Entropy Perovskite Hydroxides
2.2. Evaluation of the Synthesized High-Entropy Perovskite Hydroxides
2.3. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of the Synthesized High-Entropy Perovskite Hydroxides
3.2. Electrocatalytic Activity of the Synthesized High-Entropy Perovskite Hydroxides
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hardwick, L.J.; Bruce, P.G. The pursuit of rechargeable non-aqueous lithium–oxygen battery cathodes. Curr. Opin. Solid State Mater. Sci. 2012, 16, 178–185. [Google Scholar] [CrossRef]
- Lee, J.S.; Tai Kim, S.; Cao, R.; Choi, N.S.; Liu, M.; Lee, K.T.; Cho, J. Metal–air batteries with high energy density: Li–air versus Zn–air. Adv. Energy Mater. 2011, 1, 34–50. [Google Scholar] [CrossRef]
- Bruce, P.G.; Freunberger, S.A.; Hardwick, L.J.; Tarascon, J.-M. Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 2012, 11, 19–29. [Google Scholar] [CrossRef]
- Aurbach, D.; McCloskey, B.D.; Nazar, L.F.; Bruce, P.G. Advances in understanding mechanisms underpinning lithium–air batteries. Nat. Energy 2016, 1, 16128. [Google Scholar] [CrossRef]
- Lu, Y.-C.; Gasteiger, H.A.; Shao-Horn, Y. Catalytic activity trends of oxygen reduction reaction for nonaqueous li-air batteries. J. Am. Chem. Soc. 2011, 133, 19048–19051. [Google Scholar] [CrossRef]
- Sun, B.; Munroe, P.; Wang, G. Ruthenium nanocrystals as cathode catalysts for lithium-oxygen batteries with a superior performance. Sci. Rep. 2013, 3, 2247. [Google Scholar] [CrossRef]
- Peng, Z.; Freunberger, S.A.; Chen, Y.; Bruce, P.G. A reversible and higher-rate Li–O2 battery. Science 2012, 337, 563–566. [Google Scholar]
- Zheng, X.; Cao, X.; Sun, Z.; Zeng, K.; Yan, J.; Strasser, P.; Chen, X.; Sun, S.; Yang, R. Indiscrete metal/metal-NC synergic active sites for efficient and durable oxygen electrocatalysis toward advanced Zn-air batteries. Appl. Catal. B 2020, 272, 118967. [Google Scholar] [CrossRef]
- Liu, J.; Li, D.; Wang, Y.; Zhang, S.; Kang, Z.; Xie, H.; Sun, L. MoO2 nanoparticles/carbon textiles cathode for high performance flexible Li–O2 battery. J. Energy Chem. 2020, 47, 66–71. [Google Scholar] [CrossRef]
- Gao, R.; Li, Z.; Zhang, X.; Zhang, J.; Hu, Z.; Liu, X. Carbon-dotted defective CoO with oxygen vacancies: A synergetic design of bifunctional cathode catalyst for Li–O2 batteries. ACS Catal. 2016, 6, 400–406. [Google Scholar] [CrossRef]
- Song, F.; Schenk, K.; Hu, X. A nanoporous oxygen evolution catalyst synthesized by selective electrochemical etching of perovskite hydroxide CoSn (OH)6 nanocubes. Energy Environ. Sci. 2016, 9, 473–477. [Google Scholar] [CrossRef]
- Narahara, M.; Lee, S.Y.; Sasaki, K.; Fukushima, K.; Tanaka, K.; Chae, S.; Hu, X.; Panomsuwan, G.; Ishizaki, T. Solution plasma synthesis of perovskite hydroxide CoSn (OH)6 nanocube electrocatalysts toward the oxygen evolution reaction. Sustain. Energy Fuels 2023, 7, 2582–2593. [Google Scholar] [CrossRef]
- Löffler, T.; Meyer, H.; Savan, A.; Wilde, P.; Manjón, A.G.; Chen, Y.T.; Ventosa, E.; Scheu, C.; Ludwig, A.; Schuhmann, W. Discovery of a multinary noble metal–free oxygen reduction catalyst. Adv. Energy Mater. 2018, 8, 1802269. [Google Scholar] [CrossRef]
- Löffler, T.; Ludwig, A.; Rossmeisl, J.; Schuhmann, W. What makes high-entropy alloys exceptional electrocatalysts? Angew. Chem. Int. Ed. 2021, 60, 26894–26903. [Google Scholar] [CrossRef]
- Sarkar, A.; Wang, Q.; Schiele, A.; Chellali, M.R.; Bhattacharya, S.S.; Wang, D.; Brezesinski, T.; Hahn, H.; Velasco, L.; Breitung, B. High-entropy oxides: Fundamental aspects and electrochemical properties. Adv. Mater. 2019, 31, e1806236. [Google Scholar] [CrossRef]
- Sarkar, A.; Velasco, L.; Wang, D.; Wang, Q.; Talasila, G.; de Biasi, L.; Kübel, C.; Brezesinski, T.; Bhattacharya, S.S.; Hahn, H.; et al. High entropy oxides for reversible energy storage. Nat. Commun. 2018, 9, 3400. [Google Scholar] [CrossRef]
- Zhao, Q.; Yan, Z.; Chen, C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211. [Google Scholar] [CrossRef]
- Trang, N.L.N.; Nga, D.T.N.; Tufa, L.T.; Tran, V.T.; Hung, T.-T.; Phan, V.N.; Pham, T.N.; Hoang, V.-T.; Le, A.-T. Unveiling the effect of crystallinity and particle size of biogenic Ag/ZnO nanocomposites on the electrochemical sensing performance of carbaryl detection in agricultural products. RSC Adv. 2023, 13, 8753–8764. [Google Scholar] [CrossRef]
- Idriss, H. On the wrong assignment of the XPS O1s signal at 531–532 eV attributed to oxygen vacancies in photo- and electro-catalysts for water splitting and other materials applications. Surf. Sci. 2021, 712, 121894. [Google Scholar] [CrossRef]
- Han, Y.; Xu, J.; Xie, W.; Wang, Z.; Hu, P. Comprehensive study of oxygen vacancies on the catalytic performance of ZnO for CO/H2 activation using machine learning-accelerated first-principles simulations. ACS Catal. 2023, 13, 5104–5113. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, M.; Zhang, L.; Dai, L.; Xia, Z. Design principles for heteroatom-doped carbon nanomaterials as highly efficient catalysts for fuel cells and metal–air batteries. Adv. Mater. 2015, 27, 6834–6840. [Google Scholar] [CrossRef]
- Ji, Q.; Bi, L.; Zhang, J.; Cao, H.; Zhao, X.S. The role of oxygen vacancies of ABO3 perovskite oxides in the oxygen reduction reaction. Energy Environ. Sci. 2020, 13, 1408–1428. [Google Scholar] [CrossRef]
- Du, Y.; Xie, F.; Lu, M.; Lv, R.; Liu, W.; Yan, Y.; Yan, S.; Zou, Z. Continuous strain tuning of oxygen evolution catalysts with anisotropic thermal expansion. Nat. Commun. 2024, 15, 1780. [Google Scholar] [CrossRef]
- Sun, S.; Li, H.; Xu, Z.J. Impact of surface area in evaluation of catalyst activity. Joule 2018, 2, 1024–1027. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Tsai, C.-C.; Nguyen, V.T.; Huang, Y.-J.; Su, Y.-H.; Li, S.-Y.; Xie, R.-K.; Lin, Y.-J.; Lee, J.-F.; Ting, J.-M. High entropy promoted active site in layered double hydroxide for ultra-stable oxygen evolution reaction electrocatalyst. Chem. Eng. J. 2023, 466, 143352. [Google Scholar] [CrossRef]
- Nguyen, T.X.; Liao, Y.C.; Lin, C.C.; Su, Y.H.; Ting, J.M. Advanced High Entropy Perovskite Oxide Electrocatalyst for Oxygen Evolution Reaction. Adv. Funct. Mater. 2021, 31, 2101632. [Google Scholar] [CrossRef]
Atomic Composition, at% | ||||||
---|---|---|---|---|---|---|
Co | Cu | Fe | Mn | Mg | Ni | |
CCFMMSOH | 17.9 | 20.9 | 22.6 | 20.6 | 18.0 | ― |
CCFMNSOH | 18.8 | 19.5 | 21.8 | 20.2 | ― | 19.7 |
Relative Component Ratio, % | ||||
---|---|---|---|---|
Bonding | Peak Position (eV) | CSOH | CCFMMSOH | CCFMNSOH |
OH | 531–532 | 33.2 | 38.9 | 88.9 |
H2O | 533–534 | 66.8 | 61.1 | 11.1 |
Surface Area, m2/g | Pore Diameter (nm) | |
---|---|---|
CSOH | 84.67 | 4.62 |
CCFMMSOH | 158.72 | 4.27 |
CCFMNSOH | 169.33 | 3.65 |
Sample | ORR Onset Potential (V) | Electron Transfer-Numbers (n) | Formation Rate of HO2− (%) | Half-Wave Potential (V) | Limiting Current Density (mA/cm2) |
---|---|---|---|---|---|
CSOH | 0.660 | 2.73 | 63.40 | 0.586 | −0.79 |
CCFMMSOH | 0.710 | 2.58 | 71.13 | 0.635 | −1.54 |
CCFMNSOH | 0.690 | 3.13 | 43.13 | 0.607 | −1.52 |
Pt/C 20 wt% | 0.940 | 3.71 | 14.40 | 0.830 | −4.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chae, S.; Shio, A.; Kishida, T.; Furutono, K.; Kojima, Y.; Panomsuwan, G.; Ishizaki, T. Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction. Materials 2024, 17, 2963. https://doi.org/10.3390/ma17122963
Chae S, Shio A, Kishida T, Furutono K, Kojima Y, Panomsuwan G, Ishizaki T. Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction. Materials. 2024; 17(12):2963. https://doi.org/10.3390/ma17122963
Chicago/Turabian StyleChae, Sangwoo, Akihito Shio, Tomoya Kishida, Kosuke Furutono, Yumi Kojima, Gasidit Panomsuwan, and Takahiro Ishizaki. 2024. "Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction" Materials 17, no. 12: 2963. https://doi.org/10.3390/ma17122963
APA StyleChae, S., Shio, A., Kishida, T., Furutono, K., Kojima, Y., Panomsuwan, G., & Ishizaki, T. (2024). Synthesis of High-Entropy Perovskite Hydroxides as Bifunctional Electrocatalysts for Oxygen Evolution Reaction and Oxygen Reduction Reaction. Materials, 17(12), 2963. https://doi.org/10.3390/ma17122963