Influence of AWJ Process Parameters on Erosion Groove Formation in Additively Manufactured Stainless Steel
Abstract
:1. Introduction
2. Materials and Methods
Preparation and Conduction of the Experiment
3. Results and Discussion
3.1. ANOVA and Regression Analysis (Average Area of Erosion Groove SD SS 316L A)
3.2. ANOVA and Regression Analysis (Average Area of Erosion Groove SD SS 316L B)
4. Conclusions
- -
- The highest average values of the erosion groove were recorded at traverse speed vf 60 mm·min−1, abrasive mass flow rate ma 60 g·min−1, and standoff distance SoD 4 mm. For material SS 316L A, the highest measured average value of the area of erosion groove was SD SS 316L A 268,092 µm2.
- -
- For material SS 316L B, the highest measured average value of the area of erosion groove was SD SS 316L B 283,538 µm2. The lowest average values of the erosion groove were recorded at a traverse speed of 200 mm·min−1 and an abrasive mass flow rate ma of 20 g·min−1 with standoff distance SoD 5 mm.
- -
- For specimens of material SS 316L A, SD SS 316L A 27,303 µm2, and for SS 316L B, the average area of the erosion groove was SD SS 316L B 38,615 µm2.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yuvaraj, N.; Pradeep Kumar, M. Multiresponse optimization of abrasive water jet cutting process parameters using TOPSIS approach. Mater. Manuf. Process. 2015, 30, 882–889. [Google Scholar] [CrossRef]
- Momber, A.W.; Kovacevic, R. Principles of Abrasive Water Jet Machining; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Anu Kuttan, A.; Rajesh, R.; Dev Anand, M. Abrasive water jet machining techniques and parameters: A state of the art, open issue challenges and research directions. J. Braz. Soc. Mech. Sci. Eng. 2021, 43, 1–14. [Google Scholar] [CrossRef]
- Natarajan, Y.; Murugesan, P.K.; Mohan, M.; Khan SA, L.A. Abrasive Water Jet Machining process: A state of art of review. J. Manuf. Process. 2020, 49, 271–322. [Google Scholar] [CrossRef]
- Kale, A.; Singh, S.K.; Sateesh, N.; Subbiah, R. A review on abrasive water jet machining process and its process parameters. Mater. Today Proc. 2020, 26, 1032–1036. [Google Scholar] [CrossRef]
- Alberdi, A.; Rivero, A.; López de Lacalle, L.N.; Etxeberria, I.; Suárez, A. Effect of process parameter on the kerf geometry in abrasive water jet milling. Int. J. Adv. Manuf. Technol. 2010, 51, 467–480. [Google Scholar] [CrossRef]
- Escobar-Palafox, G.A.; Gault, R.S.; Ridgway, K. Characterisation of abrasive water-jet process for pocket milling in Inconel 718. Procedia CIRP 2012, 1, 404–408. [Google Scholar] [CrossRef]
- Sefene, E.M. State-of-the-art of selective laser melting process: A comprehensive review. J. Manuf. Syst. 2022, 63, 250–274. [Google Scholar] [CrossRef]
- Hashish, M. An investigation of milling with abrasive-waterjets. J. Eng. Ind. 1989, 111, 158–166. [Google Scholar] [CrossRef]
- Razavykia, A.; Brusa, E.; Delprete, C.; Yavari, R. An overview of additive manufacturing technologies—A review to technical synthesis in numerical study of selective laser melting. Materials 2020, 13, 3895. [Google Scholar] [CrossRef]
- Korkmaz, M.E.; Gupta, M.K.; Waqar, S.; Kuntoğlu, M.; Krolczyk, G.M.; Maruda, R.W.; Pimenov, D.Y. A short review on thermal treatments of Titanium & Nickel based alloys processed by selective laser melting. J. Mater. Res. Technol. 2022, 16, 1090–1101. [Google Scholar]
- Gibson, I.; Rosen, D.W.; Stucker, B.; Khorasani, M.; Rosen, D.; Stucker, B.; Khorasani, M. Additive Manufacturing Technologies; Springer: Cham, Switzerland, 2021; Volume 17, pp. 160–186. [Google Scholar]
- Gardan, J. Additive manufacturing technologies: State of the art and trends. In Additive Manufacturing Handbook; CRC Press: Boca Raton, FL, USA, 2017; pp. 149–168. [Google Scholar]
- Ozcan, Y.; Tunc, L.T.; Kopacka, J.; Cetin, B.; Sulitka, M. Modelling and simulation of controlled depth abrasive water jet machining (AWJM) for roughing passes of free-form surfaces. Int. J. Adv. Manuf. Technol. 2021, 114, 3581–3596. [Google Scholar] [CrossRef]
- Fowler, G.; Shipway, P.H.; Pashby, I.R. Abrasive water-jet controlled depth milling of Ti6Al4V alloy—An investigation of the role of jet–workpiece traverse speed and abrasive grit size on the characteristics of the milled material. J. Mater. Process. Technol. 2005, 161, 407–414. [Google Scholar] [CrossRef]
- Hashish, M. Controlled-depth milling techniques using abrasive-water-jet. Jet Cut. Technol. 1994, 449, 649–654. [Google Scholar]
- Hashish, M. Pressure effects in abrasive-waterjet (AWJ) machining. J. Eng. Mater. Technol. 1989, 111, 221–228. [Google Scholar] [CrossRef]
- Rabani, A.; Madariaga, J.; Bouvier, C.; Axinte, D. An approach for using iterative learning for controlling the jet penetration depth in abrasive waterjet milling. J. Manuf. Process. 2016, 22, 99–107. [Google Scholar] [CrossRef]
- Deam, R.T.; Lemma, E.; Ahmed, D.H. Modelling of the abrasive water jet cutting process. Wear 2004, 257, 877–891. [Google Scholar] [CrossRef]
- Botko, F.; Botkova, D.; Gelatko, M.; Vandzura, R.; Klichova, D. Evaluation of the Depth and Width of Cuts after Controlled-Depth Abrasive Water Jet Machining Using Low Pressure. Materials 2023, 16, 7532. [Google Scholar] [CrossRef] [PubMed]
- Gupta, T.V.K.; Ramkumar, J.; Tandon, P.; Vyas, N.S. Role of process parameters on pocket milling with Abrasive Water Jet Machining technique. Int. J. Mech. Mechatron. Eng. 2013, 7, 2021–2026. [Google Scholar]
- Cenac, F.; Zitoune, R.; Collombet, F.; Deleris, M. Abrasive water-jet milling of aeronautic aluminum 2024-T3. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2015, 229, 29–37. [Google Scholar] [CrossRef]
- Popan, A.; Balc, N.; Carean, A.; Luca, A.; Miron, A. Research on Abrasive Water Jet Milling of the Planar Surfaces, Slots and Profiles. Appl. Mech. Mater. 2015, 760, 409–414. [Google Scholar] [CrossRef]
- Data Sheet: SS 316L-0407 Powder for Additive Manufacturing. Available online: https://www.renishaw.com/resourcecentre/en/details/data-sheet-ss-316l-0407-powder-for-additive-manufacturing--90802 (accessed on 27 April 2024).
- Data Sheet: Stainless Steel 316L (1.4404). Available online: https://www.renishaw.com/resourcecentre/en/details/RenAM-500-series-stainless-steel-316L-14404-material-data-sheet--130335?lang=en (accessed on 27 April 2024).
- ASTM E8/E8M-16a; Standard Test Methods for Tension Testing of Metallic Materials. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM E384-11; Standard Test Method for Knoop and Vickers Hardness of Materials. ASTM International: West Conshohocken, PA, USA, 2012.
- Holmberg, J.; Wretland, A.; Berglund, J. Abrasive Water Jet Milling as An Efficient Manufacturing Method for Superalloy Gas Turbine Components. J. Manuf. Mater. Process. 2022, 6, 124. [Google Scholar] [CrossRef]
Element | Cr | Ni | Mo | Mn | Si | N | O | P | C | S | Fe |
---|---|---|---|---|---|---|---|---|---|---|---|
Mass (%) | 16–18 | 10–14 | 2–3 | ≤2 | ≤1 | ≤0.1 | ≤0.1 | ≤0.045 | ≤0.03 | ≤0.03 | Rest. |
Orientation | Upper Tensile Strength 1 | Yield Strength 1 | Elongation at Break 1 | Modulus of Elasticity 1 | Hardness (Vickers) 2 |
---|---|---|---|---|---|
Horizontal direction (XY) | 676 ± 2 MPa | 547 ± 3 MPa | 43 ± 2% | 197 ± 4 GPa | 198 ± 8 HV0.5 |
Vertical direction (Z) | 624 ± 17 MPa | 494 ± 14 MPa | 35 ± 8% | 190 ± 10 GPa | 208 ± 6 HV0.5 |
Water Pressure p | Nozzle Diameter dv | Diameter of Focusing Tube df | Length of Focusing Tube dL | Tilt Angle of Cutting Head γ |
---|---|---|---|---|
50 MPa | 0.33 mm | 1.02 mm | 76.2 mm | 90° |
Level | Traverse Speed vf | Abrasive Mass Flow ma | Standoff Distance SoD |
---|---|---|---|
1 | 60 mm·min−1 | 20 g·min−1 | 3 mm |
2 | 140 mm·min−1 | 40 g·min−1 | 4 mm |
3 | 220 mm·min−1 | 60 g·min−1 | 5 mm |
Process Parameters | Average Area of Erosion Groove | ||||
---|---|---|---|---|---|
Traverse Speed vf [mm·min−1] | Abrasive Mass Flow ma [g·min−1] | Standoff Distance SoD [mm] | SD SS 316L A [µm2] | SD SS 316L B [µm2] | |
1 | 60 | 20 | 3 | 127,992 | 135,761 |
2 | 60 | 20 | 4 | 113,970 | 116,181 |
3 | 60 | 20 | 5 | 120,278 | 126,079 |
4 | 60 | 40 | 3 | 205,556 | 213,629 |
5 | 60 | 40 | 4 | 221,990 | 235,206 |
6 | 60 | 40 | 5 | 182,891 | 187,181 |
7 | 60 | 60 | 3 | 248,444 | 250,309 |
8 | 60 | 60 | 4 | 268,092 | 283,538 |
9 | 60 | 60 | 5 | 218,418 | 241,875 |
10 | 140 | 20 | 3 | 62,153 | 66,663 |
11 | 140 | 20 | 4 | 46,431 | 57,003 |
12 | 140 | 20 | 5 | 59,306 | 62,237 |
13 | 140 | 40 | 3 | 73,695 | 95,421 |
14 | 140 | 40 | 4 | 97,359 | 100,296 |
15 | 140 | 40 | 5 | 87,468 | 85,199 |
16 | 140 | 60 | 3 | 95,349 | 95,985 |
17 | 140 | 60 | 4 | 103,309 | 109,608 |
18 | 140 | 60 | 5 | 88,549 | 90,729 |
19 | 220 | 20 | 3 | 29,907 | 38,615 |
20 | 220 | 20 | 4 | 42,399 | 46,743 |
21 | 220 | 20 | 5 | 27,303 | 38,127 |
22 | 220 | 40 | 3 | 50,942 | 72,112 |
23 | 220 | 40 | 4 | 54,720 | 68,516 |
24 | 220 | 40 | 5 | 48,258 | 59,235 |
25 | 220 | 60 | 3 | 50,552 | 76,072 |
26 | 220 | 60 | 4 | 63,774 | 82,445 |
27 | 220 | 60 | 5 | 50,168 | 66,732 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 18 | 131031000000 | 7279491175 | 81.23 | 0.00 |
Linear | 6 | 120563000000 | 20093804546 | 224.23 | 0.00 |
vf | 2 | 101427000000 | 50713437871 | 565.91 | 0.00 |
ma | 2 | 18205076623 | 9102538312 | 101.58 | 0.00 |
SoD | 2 | 930874909 | 465437454 | 5.19 | 0.04 |
2-Way Interactions | 12 | 10468013876 | 872334490 | 9.73 | 0.00 |
vf∙ma | 4 | 9191262538 | 2297815635 | 25.64 | 0.00 |
vf∙SoD | 4 | 567226430 | 141806607 | 1.58 | 0.27 |
ma∙SoD | 4 | 709524908 | 177381227 | 1.98 | 0.19 |
Error | 8 | 716908707 | 89613588 | ||
Total | 26 | 131748000000 |
Source | DF | Adj SS | Adj MS | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 18 | 131463000000 | 7303519548 | 88.67 | 0.00 |
Linear | 6 | 120748000000 | 20124643121 | 244.33 | 0.00 |
vf | 2 | 97794694671 | 48897347335 | 593.67 | 0.00 |
ma | 2 | 21811494758 | 10905747379 | 132.41 | 0.00 |
SoD | 2 | 1141669298 | 570834649 | 6.93 | 0.02 |
2-Way Interactions | 12 | 10715493131 | 892957761 | 10.84 | 0.00 |
vf∙ma | 4 | 9581438798 | 2395359700 | 29.08 | 0.00 |
vf∙SoD | 4 | 264743529 | 66185882 | 0.80 | 0.56 |
ma∙SoD | 4 | 869310804 | 217327701 | 2.64 | 0.11 |
Error | 8 | 658920167 | 82365021 | ||
Total | 26 | 132122000000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vandžura, R.; Simkulet, V.; Botko, F.; Geľatko, M.; Hatala, M. Influence of AWJ Process Parameters on Erosion Groove Formation in Additively Manufactured Stainless Steel. Materials 2024, 17, 2964. https://doi.org/10.3390/ma17122964
Vandžura R, Simkulet V, Botko F, Geľatko M, Hatala M. Influence of AWJ Process Parameters on Erosion Groove Formation in Additively Manufactured Stainless Steel. Materials. 2024; 17(12):2964. https://doi.org/10.3390/ma17122964
Chicago/Turabian StyleVandžura, Radoslav, Vladimír Simkulet, František Botko, Matúš Geľatko, and Michal Hatala. 2024. "Influence of AWJ Process Parameters on Erosion Groove Formation in Additively Manufactured Stainless Steel" Materials 17, no. 12: 2964. https://doi.org/10.3390/ma17122964
APA StyleVandžura, R., Simkulet, V., Botko, F., Geľatko, M., & Hatala, M. (2024). Influence of AWJ Process Parameters on Erosion Groove Formation in Additively Manufactured Stainless Steel. Materials, 17(12), 2964. https://doi.org/10.3390/ma17122964