Steel Slag Accelerated Carbonation Curing for High-Carbonation Precast Concrete Development
Abstract
:1. Introduction
2. Experimental
2.1. Raw Materials and Characterization
2.2. Experimental
2.2.1. Mixing Ratio Design
2.2.2. Specimen Preparation
2.3. Testing Methods
3. Results and Discussion
3.1. Effect of Water–Binder Ratio on Compressive Strength of HCPC
3.2. Effect of SF Dosages on Compressive Strength of HCPC
3.3. Effect of CSS Dosages on Compressive Strength of HCPC
3.4. Effect of Sand Content on Compressive Strength of HCPC
3.5. Chloride Permeation Resistance
3.6. Freeze–Thaw Cycle Test
3.6.1. Appearance Damage Analysis
3.6.2. Quality Loss Rate
3.6.3. Compressive Strength Loss Rate
3.7. High-Temperature Resistance
3.8. Further Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gao, W.; Zhou, W.; Lyu, X.; Liu, X.; Su, H.; Li, C.; Wang, H. Comprehensive Utilization of Steel Slag: A Review. Powder Technol. 2023, 422, 118449. [Google Scholar] [CrossRef]
- Guo, J.; Bao, Y.; Wang, M. Steel Slag in China: Treatment, Recycling, and Management. Waste Manag. 2018, 78, 318–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, Q.; Yan, P.; Mi, G. Effect of Blended Steel Slag-GBFS Mineral Admixture on Hydration and Strength of Cement. Constr. Build. Mater. 2012, 35, 8–14. [Google Scholar] [CrossRef]
- Jiang, Y.; Ling, T.-C.; Shi, C.; Pan, S.-Y. Characteristics of Steel Slags and Their Use in Cement and Concrete-A Review. Resour. Conserv. Recycl. 2018, 136, 187–197. [Google Scholar] [CrossRef]
- Furlani, E.; Tonello, G.; Maschio, S. Recycling of Steel Slag and Glass Cullet from Energy Saving Lamps by Fast Firing Production of Ceramics. Waste Manag. 2010, 30, 1714–1719. [Google Scholar] [CrossRef]
- Humbert, P.S.; Castro-Gomes, J. CO2 Activated Steel Slag-Based Materials: A Review. J. Clean. Prod. 2019, 208, 448–457. [Google Scholar] [CrossRef]
- Wang, D.; Chang, J.; Ansari, W.S. The Effects of Carbonation and Hydration on the Mineralogy and Microstructure of Basic Oxygen Furnace Slag Products. J. CO2 Util. 2019, 34, 87–98. [Google Scholar] [CrossRef]
- Wang, X.; Ni, W.; Li, J.; Zhang, S.; Hitch, M.; Pascual, R. Carbonation of Steel Slag and Gypsum for Building Materials and Associated Reaction Mechanisms. Cem. Concr. Res. 2019, 125, 105893. [Google Scholar] [CrossRef]
- Ma, J.; Dai, G.; Jiang, F.; Wang, N.; Zhao, Y.; Wang, X. Effect of Carbonation Rreatment on the Properties of Steel Slag Aggregate. Materials 2023, 16, 5768. [Google Scholar] [CrossRef]
- Yao, H.; Xu, P.; Wang, Y.; Chen, R. Exploring the Low-Carbon Transition Pathway of China’s Construction Industry under Carbon-Neutral Target: A Socio-Technical System Transition Theory Perspective. J. Environ. Manag. 2023, 327, 116879. [Google Scholar] [CrossRef]
- Ouyang, Y.; Guo, J. Carbon Capture and Storage Investment Strategy towards the Dual Carbon Goals. J. Asian Econ. 2022, 82, 101527. [Google Scholar] [CrossRef]
- Hao, P.; Singh, S.; Liu, X.; Tian, Y.; Ku, A.Y. Flexible CO2 Capture in China. Int. J. Greenh. Gas Control 2020, 101, 103140. [Google Scholar] [CrossRef]
- Zhang, C.; Yu, H.; Zhu, X.; Yao, D.; Peng, X.; Fan, X. Unified Characterization of Rubber Asphalt Mixture Strength under Different Stress Loading Paths. J. Mater. Civ. Eng. 2024, 36, 04023498. [Google Scholar] [CrossRef]
- Liu, Z.; Zeng, H.; Wang, F. Development of High Performance Carbonatable Concrete for Steel Slag Valorization. Constr. Build. Mater. 2021, 291, 123317. [Google Scholar] [CrossRef]
- Pan, S.-Y.; Adhikari, R.; Chen, Y.-H.; Li, P.; Chiang, P.-C. Integrated and Innovative Steel Slag Utilization for Iron Reclamation, Green Material Production and CO2 Fixation via Accelerated Carbonation. J. Clean. Prod. 2016, 137, 617–631. [Google Scholar] [CrossRef]
- Mo, L.; Zhang, F.; Deng, M.; Jin, F.; Al-Tabbaa, A.; Wang, A. Accelerated Carbonation and Performance of Concrete Made with Steel Slag as Binding Materials and Aggregates. Cem. Concr. Compos. 2017, 83, 138–145. [Google Scholar] [CrossRef]
- López-Guerrero, R.E.; Vera, S.; Carpio, M. A Quantitative and Qualitative Evaluation of the Sustainability of Industrialised Building Systems: A Bibliographic Review and Analysis of Case Studies. Renew. Sustain. Energy Rev. 2022, 157, 112034. [Google Scholar] [CrossRef]
- Xue, H.; Wu, Z.; Sun, Z.; Jiao, S. Effects of Policy on Developer’s Implementation of off-Site Construction: The Mediating Role of the Market Environment. Energy Policy 2021, 155, 112342. [Google Scholar] [CrossRef]
- Yu, S.; Liu, Y.; Wang, D.; Bahaj, A.S.; Wu, Y.; Liu, J. Review of Thermal and Environmental Performance of Prefabricated Buildings: Implications to Emission Reductions in China. Renew. Sustain. Energy Rev. 2021, 137, 110472. [Google Scholar] [CrossRef]
- Cheng, Z.; Zhang, T.; Zhou, X.; Li, Z.; Jia, Y.; Ren, K.; Xu, T.; Li, C.; Hong, J. Life Cycle Environmental and Cost Assessment of Prefabricated Components Manufacture. J. Clean. Prod. 2023, 415, 137888. [Google Scholar] [CrossRef]
- Ghouleh, Z.; Guthrie, R.I.L.; Shao, Y. High-Strength KOBM Steel Slag Binder Activated by Carbonation. Constr. Build. Mater. 2015, 99, 175–183. [Google Scholar] [CrossRef]
- Shao, Y.; El-Baghdadi, A.; He, Z.; Mucci, A.; Fournier, B. Carbon Dioxide-Activated Steel Slag for Slag-Bonded Wallboard Application. J. Mater. Civ. Eng. 2015, 27, 04014119. [Google Scholar] [CrossRef]
- Nielsen, P.; Boone, M.A.; Horckmans, L.; Snellings, R.; Quaghebeur, M. Accelerated Carbonation of Steel Slag Monoliths at Low CO2 Pressure-Microstructure and Strength Development. J. CO2 Util. 2020, 36, 124–134. [Google Scholar] [CrossRef]
- Librandi, P.; Nielsen, P.; Costa, G.; Snellings, R.; Quaghebeur, M.; Baciocchi, R. Mechanical and Environmental Properties of Carbonated Steel Slag Compacts as a Function of Mineralogy and CO2 Uptake. J. CO2 Util. 2019, 33, 201–214. [Google Scholar] [CrossRef]
- Cao, W.; Yang, Q. Properties of a Carbonated Steel Slag-Slaked Lime Mixture. J. Mater. Civ. Eng. 2015, 27, 04014115. [Google Scholar] [CrossRef]
- Moon, E.-J.; Choi, Y.C. Development of Carbon-Capture Binder Using Stainless Steel Argon Oxygen Decarburization Slag Activated by Carbonation. J. Clean. Prod. 2018, 180, 642–654. [Google Scholar] [CrossRef]
- Chang, J.; Xiong, C.; Zhang, Y.; Wang, D. Foaming Characteristics and Microstructure of Aerated Steel Slag Block Prepared by Accelerated Carbonation. Constr. Build. Mater. 2019, 209, 222–233. [Google Scholar] [CrossRef]
- Liu, Q.; Liu, J.; Qi, L. Effects of Temperature and Carbonation Curing on the Mechanical Properties of Steel Slag-Cement Binding Materials. Constr. Build. Mater. 2016, 124, 999–1006. [Google Scholar] [CrossRef]
- Zhang, J.; Ye, C.; Tan, H.; Liu, X. Potential Application of Portland Cement-Sulfoaluminate Cement System in Precast Concrete Cured under Ambient Temperature. Constr. Build. Mater. 2020, 251, 118869. [Google Scholar] [CrossRef]
- Yang, F.; Lai, C.; Liu, L.; Chen, Z.; Jia, H.; Zhu, J.; Jiang, Z.; Shi, C.; Liu, J. A New Method for Improving the Resistance of Cement-Based Materials to Carbonic Acid Water Corrosion: Carbonation Curing and Further Water Curing. Constr. Build. Mater. 2024, 422, 135733. [Google Scholar] [CrossRef]
- Zhang, Y.; Kong, X.; Gao, L.; Wang, J. Rheological Behaviors of Fresh Cement Pastes with Polycarboxylate Superplasticizer. J. WUHAN Univ. Technol.-Mater. Sci. Ed. 2016, 31, 286–299. [Google Scholar] [CrossRef]
- Mousavinezhad, S.; Gonzales, G.J.; Toledo, W.K.; Garcia, J.M.; Newtson, C.M.; Allena, S. A Comprehensive Study on Non-Proprietary Ultra-High-Performance Concrete Containing Supplementary Cementitious Materials. Materials 2023, 16, 2622. [Google Scholar] [CrossRef] [PubMed]
- Liu, G.; Tang, Y.; Wang, J. Effects of Carbonation Degree of Semi-Dry Carbonated Converter Steel Slag on the Performance of Blended Cement Mortar—Reactivity, Hydration, and Strength. J. Build. Eng. 2023, 63, 105529. [Google Scholar] [CrossRef]
- Roque, A.J.; Rodrigues, G.M.; da Silva, P.F. Recycling of Construction and Demolition Waste and Steel Slag: Characterization of the Durability. J. Mater. Cycles Waste Manag. 2020, 22, 1699–1711. [Google Scholar] [CrossRef]
- Qin, L.; Gao, X.; Chen, T. Influence of Mineral Admixtures on Carbonation Curing of Cement Paste. Constr. Build. Mater. 2019, 212, 653–662. [Google Scholar] [CrossRef]
- Song, Q.; Guo, M.-Z.; Wang, L.; Ling, T.-C. Use of Steel Slag as Sustainable Construction Materials: A Review of Accelerated Carbonation Treatment. Resour. Conserv. Recycl. 2021, 173, 105740. [Google Scholar] [CrossRef]
- Gokce, H.S. High Temperature Resistance of Boron Active Belite Cement Mortars Containing Fly Ash. J. Clean. Prod. 2019, 211, 992–1000. [Google Scholar] [CrossRef]
- He, X.; Li, W.; Su, Y.; Zheng, Z.; Fu, J.; Zeng, J.; Tan, H.; Wu, Y.; Yang, J. Recycling of Plastic Waste Concrete to Prepare an Effective Additive for Early Strength and Late Permeability Improvement of Cement Paste. Constr. Build. Mater. 2022, 347, 128581. [Google Scholar] [CrossRef]
- Peng, G.; Hao, T.; Li, B. A Review of Progress in Research on Fire Resistance of High Strength and Ultra High Strength Concretes. Ind. Constr. 2012, 42, 134–138. [Google Scholar]
- Salman, M.; Cizer, O.; Pontikes, Y.; Santos, R.M.; Snellings, R.; Vandewalle, L.; Blanpain, B.; Van Balen, K. Effect of Accelerated Carbonation on AOD Stainless Steel Slag for Its Valorisation as a CO2-Sequestering Construction Material. Chem. Eng. J. 2014, 246, 39–52. [Google Scholar] [CrossRef]
- Mo, L.; Zhang, F.; Deng, M. Mechanical Performance and Microstructure of the Calcium Carbonate Binders Produced by Carbonating Steel Slag Paste under CO2 Curing. Cem. Concr. Res. 2016, 88, 217–226. [Google Scholar] [CrossRef]
Chemical Composition | CaO | SiO2 | Al2O3 | Fe2O3 | SO3 | MgO | K2O | Na2O | LOI |
---|---|---|---|---|---|---|---|---|---|
Cement | 65.21 | 21.27 | 4.57 | 3.25 | 2.48 | 1.62 | 0.76 | 0.08 | 0.76 |
CSS | 46.84 | 12.38 | 5.72 | 25.56 | 0.25 | 5.61 | 0.81 | 0.13 | 2.70 |
SF | 0.39 | 94.57 | 0.51 | 0.23 | 0.26 | 0.65 | 1.05 | 0.34 | 2.00 |
No. | Binder/wt.% | w/b | Sand (Volume Fraction/%) | SP kg/m3 | ||
---|---|---|---|---|---|---|
Cement | SF | CSS | ||||
1 | 6 | 4 | 90 | 0.4 | 40 | 0 |
2 | 0.3 | 4.7 | ||||
3 | 0.25 | 9.06 | ||||
4 | 0.18 | 44.9 | ||||
5 | 20 | 0 | 80 | 0.18 | 40 | 45.5 |
6 | 17 | 3 | 45.2 | |||
7 | 14 | 6 | 44.9 | |||
8 | 12 | 8 | 44.7 | |||
9 | 12 | 8 | 80 | 0.18 | 40 | 44.7 |
10 | 6 | 4 | 90 | 44.9 | ||
11 | 3 | 2 | 95 | 45.3 | ||
12 | 0 | 0 | 100 | 45.5 | ||
13 | 6 | 4 | 90 | 0.18 | 0 | 75.9 |
14 | 20 | 60.4 | ||||
15 | 30 | 52.7 | ||||
16 | 40 | 44.9 |
U (V) | xd (mm) | Dnssm (×10−12 m2/s) | |
---|---|---|---|
HCPC-H3d | 25 | 31 | 17.5(±1.6) |
HCPC-C24h | 25 | 2.1 | 0.78(±0.15) |
UHPC-H3d | 25 | 3.5 | 1.3(±0.18) |
Raw Materials | Preparation Method | Water–Binder Ratio | Product Size | Curing Condition | Compressive Strength/MPa |
---|---|---|---|---|---|
Steel slag Gypsum [8] | compression molding | 0.2 | Φ20 × 10 mm | CO2 20 ± 3%, 1 d | 32 |
KOBM slag [21] | compression molding | 0.15 | Φ15 × 30 mm | CO2 99.5%, 0.15 MPa, 2 h | 80.5 |
KOBM slag [22] | compression molding | 0.1 | Φ15 × 20 mm | CO2 99.5%, 0.15 MPa, 2 h | 46 |
Steel slag [23] | compression molding | 0.1 | 61 × 61 × 33 mm | CO2 17%, 24 h, 0.15 MPa, 20 °C | 40 |
BOF slag EAF slag [24] | compression molding | 0.1 | Φ23 × 20 mm | CO2 100%, 1 MPa, 50 °C, 4 h | 47.2 |
AOD slag [40] | compression molding | 0.15 | 40 × 40 × 40 mm | CO2 100%, 15 h, 0.8 MPa, 80 °C | 59.8 |
BOFS(80%) P.II 52.5 [16] | pouring molding | 0.54 | 100 × 100 × 100 mm | CO2 99.9%, 0.1 MPa, 1 d | 33.5 |
Steel slag Slaked lime River sand [25] | pouring molding | 0.5 | 40 × 40 × 160 mm | CO2 20%, 20 ± 5 °C | 22.7 |
AODS OPC [26] | pouring molding | 0.5 | - | CO2 5%, 20 °C, 7 d | 24.9 |
BOFS(30%) P.I 42.5 Steel slag [28] | pouring molding | 0.5 | 40 × 40 × 160 mm | CO2 99.9%, 90 °C, 7 h | 24.5 |
BOFS(80%) P.II 52.5 Steel slag [41] | pouring molding | 0.4 | 20 × 20 × 20 mm | CO2 99.9%, 0.1 MPa, 1 d | 59.5 |
This paper Steel slag | pouring molding | 0.18 | 40 × 40 × 40 mm | CO2 99.9%, 0.4 MPa, 12 h | 104.9 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, W.; Wang, H.; Liu, Z.; Li, N.; Zhao, S.; Hu, S. Steel Slag Accelerated Carbonation Curing for High-Carbonation Precast Concrete Development. Materials 2024, 17, 2968. https://doi.org/10.3390/ma17122968
Li W, Wang H, Liu Z, Li N, Zhao S, Hu S. Steel Slag Accelerated Carbonation Curing for High-Carbonation Precast Concrete Development. Materials. 2024; 17(12):2968. https://doi.org/10.3390/ma17122968
Chicago/Turabian StyleLi, Weilong, Hui Wang, Zhichao Liu, Ning Li, Shaowei Zhao, and Shuguang Hu. 2024. "Steel Slag Accelerated Carbonation Curing for High-Carbonation Precast Concrete Development" Materials 17, no. 12: 2968. https://doi.org/10.3390/ma17122968
APA StyleLi, W., Wang, H., Liu, Z., Li, N., Zhao, S., & Hu, S. (2024). Steel Slag Accelerated Carbonation Curing for High-Carbonation Precast Concrete Development. Materials, 17(12), 2968. https://doi.org/10.3390/ma17122968