The Effect of High-Temperature Deformation on the Mechanical Properties and Corrosion Resistance of the 2024 Aluminum Alloy Joint after Friction Stir Welding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material and Sample Preparation
2.2. Corrosion Experiment
3. Results and Discussion
3.1. Morphology of FSW Joints
3.2. Mechanical Properties of the 2024-O Aluminum Alloy FSW Joint
3.3. Fracture Morphology Analysis of the FSW Joint
3.4. The Corrosion Behavior of High-Temperature Deformation Samples
4. Conclusions
- When there was no high-temperature deformation (0%), some coarse reinforcement particles were distributed in the matrix, and the mean value of reinforcement elements was 1.34 μm. The coarse particles were broken and the fine particles were evenly distributed after high-temperature deformation. When the high-temperature deformation was 20%, the mean value of reinforcement elements was only 1.19 μm.
- In the welding state, the microhardness of the 2024-O aluminum alloy FSW joints showed an obvious “Ω” shape. The average microhardness of the weld nugget zone was the highest and its value was 111 HV. With the increase in high-temperature deformations, the overall hardness of the joints increased. When the high-temperature deformation was 20%, the microhardness and tensile strength of the FSW joint reached the maximum values of 146 HV and 465 MPa, respectively.
- The FSW joints with high-temperature deformation of 0% and 20% had cleavage and dimple fractures. However, dimple fracture was the main fracture mode in the FSW joints with 10% and 30% deformation. Compared with the 0% deformation specimen, the hardness and strength values of the 20% deformation samples were increased by 32% and 21%, respectively. The corrosion resistance of the specimens was as follows from high to low: 20% > 0% > 30% > 10%.
- Among the four deformed samples, the 20% deformation sample had the largest amount of uniformly distributed S’ phase, and the S’ phase’s shape was a very fine needle structure. This was mainly because the dislocation density increased continuously, which provided a more favorable nucleation position for the precipitation of the S’ phase.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, B.S.; Wei, L.J.; Xu, Y.J.; Ma, X.G.; Liu, Y.F.; Hou, H.L. Effect of pre-deformation on microstructure and mechanical properties of ultra-high strength Al-Zn-Mg-Cu alloy after ageing treatment. Acta Metall. Sin. 2020, 56, 1007–1014. [Google Scholar]
- Joost, W.J. Reducing vehicle weight and improving U.S. energy efficiency using integrated computational materials engineering. JOM 2012, 64, 1032–1038. [Google Scholar] [CrossRef]
- Sun, W.W.; Zhu, Y.M.; Marceau, R.; Wang, L.Y.; Zhang, Q.; Gao, X.; Hutchinson, C. Precipitation strengthening of aluminum alloys by room-temperature cyclic plasticity. Science 2019, 363, 972–975. [Google Scholar] [CrossRef]
- Ma, Q.N.; Shao, F.; Bai, L.Y.; Xu, Q.; Xie, X.K.; Shen, M. Corrosion fatigue fracture characteristics of FSW 7075 aluminum alloy joints. Materials 2020, 13, 4196. [Google Scholar] [CrossRef]
- Zhao, Z.X.; Liang, H.M.; Zhao, Y.; Yan, K. Effect of exchanging advancing and retreating side materials on mechanical properties and electrochemical corrosion resistance of dissimilar 6013-T4 and 7003 aluminum alloys FSW joints. J. Mater. Eng. Perform. 2018, 27, 1777–1783. [Google Scholar] [CrossRef]
- Song, Y.F.; Ding, X.F.; Xiao, L.R.; Zhao, X.J.; Cai, Z.Y.; Guo, L.; Li, Y.W.; Zheng, Z.Z. Effects of two-stage aging on the dimensional stability of Al-Cu-Mg alloy. J. Alloys Compd. 2017, 701, 508–514. [Google Scholar] [CrossRef]
- Rodríguez-Millán, M.; Vaz-Romero, A.; Arias, A. Failure behavior of 2024-T3 aluminum under tension-torsion conditions. J. Mech. Sci. Technol. 2015, 29, 4657–4663. [Google Scholar] [CrossRef]
- Safdarian, R.; Sheikhi, M.; Torkamany, M.J. An investigation on the laser welding process parameter effects on the failure mode of tailor welded blanks during the formability testing. J. Mater. Res. Technol. 2024, 28, 1393–1404. [Google Scholar] [CrossRef]
- Li, C.; Zhang, D.C.; Gao, X.; Gao, H.X.; Han, X. Numerical simulation and experimental research on friction stir welding of 2024-T3 aeronautical aluminum alloy. J. Adhes. Sci. Technol. 2021, 35, 2230–2248. [Google Scholar] [CrossRef]
- Mishra, R.S.; Ma, Z.Y. Friction Stir Welding and Processing. Mater. Sci. Eng. R. 2005, 50, 1–78. [Google Scholar] [CrossRef]
- Mabuwa, S.; Msomi, V. Effect of friction stir processing on gas tungsten arc-welded and friction stir-welded 5083-H111 aluminium alloy joints. Adv. Mater. Sci. Eng. 2019, 2019, 3510236. [Google Scholar] [CrossRef]
- Guo, N.; Fu, Y.L.; Wang, Y.Z.; Meng, Q.; Zhu, Y.X. Microstructure and mechanical properties in friction stir welded 5A06 aluminum alloy thick plate. Mater. Des. 2017, 113, 273–283. [Google Scholar] [CrossRef]
- Wang, D.; Liu, J.; Xia, B.L.; Ma, Z.Y. Mg/Al reaction and mechanical properties of Al alloy/Mg alloy friction stir welding joints. Acta Metall. Sin. 2010, 46, 589–594. [Google Scholar] [CrossRef]
- Sun, Y.F.; Xu, N.; Fujii, H. The Microstructure and Mechanical Properties of Friction Stir Welded Cu-30Zn Brass Alloys. Mater. Sci. Eng. A 2014, 589, 228–234. [Google Scholar] [CrossRef]
- Li, J.P.; Shen, Y.F.; Hou, W.T.; Qi, Y.M. Friction stir welding of Ti-6Al-4V alloy: Friction tool, microstructure, and mechanical properties. J. Manuf. Process. 2020, 58, 344–354. [Google Scholar] [CrossRef]
- Behjat, A.; Shamanian, M.; Atapour, M.; Sarmadi, M.A. Microstructure and corrosion properties of friction stir-welded high-strength low-alloy Steel. T. Indian I Met. 2021, 74, 1763–1774. [Google Scholar] [CrossRef]
- Wagner, D.C.; Chai, X.; Tang, X.; Kou, S.D. Liquation cracking in arc and friction-stir welding of Mg-Zn alloys. Metall. Mater. Trans. A 2015, 46, 315–327. [Google Scholar] [CrossRef]
- Ahmed, S.; Shubhrant, A.; Deep, A.; Saha, P. Development and analysis of butt and lap welds in micro-friction stir welding. Adv. Mater. Form. Join. 2015, 1, 295–306. [Google Scholar]
- Yue, Y.M.; Wang, G.Q.; Yang, K.; Wu, B.S.; Yan, D.J. Friction stir butt welding thin aluminum alloy sheets. Int. J. Adv. Manuf. Tech. 2018, 96, 3139–3147. [Google Scholar] [CrossRef]
- Qian, S.H.; Zhang, T.M.; Chen, Y.H.; Xie, J.L.; Chen, Y.; Lin, T.S.; Li, H.X. Effect of ultrasonic impact treatment on microstructure and corrosion behavior of friction stir welding joints of 2219 aluminum alloy. J. Mater. Res. Technol. 2022, 18, 1631–1642. [Google Scholar] [CrossRef]
- Deng, C.M.; Wang, C.M.; Wang, F.F.; Song, B.Y.; Zhang, H. Effect of microstructure evolution on corrosion behavior of 2195 Al-Li alloy friction stir welding joint. Mater. Charact. 2022, 184, 111652. [Google Scholar] [CrossRef]
- Bocchi, S.; Cabrini, M.; D’Urso, G.; Giardini, C.; Lorenzi, S.; Pastore, T. The influence of process parameters on mechanical properties and corrosion behavior of friction stir welded aluminum joints. J. Manuf. Process. 2018, 35, 1–15. [Google Scholar] [CrossRef]
- Dick, P.A.; Knornschild, G.H.; Dick, L.F.P. Anodising and corrosion resistance of AA 7050 friction stir welds. Corros. Sci. 2017, 114, 28–36. [Google Scholar] [CrossRef]
- Thamilarasan, K.; Rajendraboopathy, S.; Reddy, G.M.; Rao, T.S.; Rao, S.R.K. Salt fog corrosion behavior of friction stir welded AA2014-T651 aluminum alloy. Mater. Test. 2016, 58, 932–938. [Google Scholar] [CrossRef]
- Qin, H.L.; Zhang, H.; Sun, D.T.; Zhuang, Q.Y. Corrosion behavior of the friction-stir-welded joints of 2A14-T6 aluminum alloy. Int. J. Min. Met. Mater. 2015, 22, 627–638. [Google Scholar] [CrossRef]
- Ma, Z.M.; Liu, J.; Yang, Z.S.; Liu, S.D.; Zhang, Y. Effect of cooling rate and grain structure on the exfoliation corrosion susceptibility of AA 7136 alloy. Mater. Charact. 2020, 168, 110533. [Google Scholar] [CrossRef]
- Morishige, T.; Doi, H.; Goto, T.; Nakamura, E.; Takenaka, T. Exfoliation corrosion behavior of cold-rolled Mg-14 mass% Li-1 mass% Al alloy in NaCl solution. Mater. Trans. 2013, 54, 1863–1866. [Google Scholar] [CrossRef]
- Ding, Z.Y.; Cui, L.Y.; Zeng, R.C.; Zhao, Y.B.; Guan, S.K.; Xu, D.K.; Lin, C.G. Exfoliation corrosion of extruded Mg-Li-Ca alloy. J. Mater. Sci. Technol. 2018, 34, 1550–1557. [Google Scholar] [CrossRef]
- Lu, Y.L.; Wang, J.; Li, X.C.; Li, W.; Li, R.L.; Zhou, D.S. Effects of pre-deformation on the microstructures and corrosion behavior of 2219 aluminum alloys. Mat. Sci. Eng. A 2018, 723, 204–211. [Google Scholar] [CrossRef]
- Yang, Y.L.; Zhan, L.H.; Shen, R.L.; Yin, X.N.; Li, X.C.; Li, W.K.; Huang, M.H.; He, D.Q. Effect of pre-deformation on creep age forming of 2219 aluminum alloy: Experimental and constitutive modelling. Mat. Sci. Eng. A 2017, 683, 227–235. [Google Scholar] [CrossRef]
- Hu, Z.L.; Wang, X.S.; Pang, Q.; Huang, F.; Qin, X.P.; Hua, L. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint. Mater. Charact. 2015, 99, 180–187. [Google Scholar] [CrossRef]
- Zhang, J.H.; Hu, Z.L. Microstructural thermal stability of aluminum alloy friction stir welding joint. J. Mech. Eng. 2022, 58, 73–79. [Google Scholar]
- GB/T 288.1-2010; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. Standard Press of China: Beijing, China, 2010.
- GB/T 22639-2008; Test Methods for Exfoliation Corrosion for Wrough Aluminium and Aluminium Alloys. Standard Press of China: Beijing, China, 2008.
- GB/T 7998-2005; Test Method for Intergranular Corrosion of Aluminium Alloy. Standard Press of China: Beijing, China, 2005.
- Deng, C.Y.; Wang, H.; Gong, B.M.; Li, X.; Lei, Z.Y. Effects of microstructural heterogeneity on very high cycle fatigue properties of 7050-T7451 aluminum alloy friction stir butt welds. Int. J. Fatigue 2016, 83, 100–108. [Google Scholar] [CrossRef]
- Kubit, A.; Trzepiecinski, T.; Kluz, R.; Ochalek, K.; Slota, J. Multi-criteria optimisation of friction stir welding parameters for EN AW-2024-T3 aluminium alloy Joints. Materials 2022, 15, 5428. [Google Scholar] [CrossRef]
- Nadammal, N.; Kailas, S.V.; Szpunar, J.; Suwas, S. Microstructure and Texture Evolution during Single- and Multiple-Pass Friction Stir Processing of Heat-Treatable Aluminum Alloy 2024. Metall. Mater. Trans. A 2017, 48, 4247–4261. [Google Scholar] [CrossRef]
- Zhang, T.; Luo, H.Y.; Su, Y.Q.; Xu, P.W.; Luo, J.; Li, S.J. Effect of Precipitate Embryo Induced by Strain on Natural Aging and Corrosion Behavior of 2024 Al Alloy. Coatings 2018, 8, 92. [Google Scholar] [CrossRef]
- Hashimoto, T.; Zhang, X.; Zhou, X.; Skeldon, P.; Haigh, S.J.; Thompson, G.E. Investigation of dealloying of S’ phase (Al2CuMg) in AA 2024-T3 aluminium alloy using high resolution 2D and 3D electron imaging. Corros. Sci. 2016, 103, 157–164. [Google Scholar] [CrossRef]
- Hunt, J.B.; Pearl, D.; Hovanski, Y.; Dryzek, E.; Dymek, S.; Hamilton, C. Temperature-controlled friction stir welds of age-hardenable aluminum alloys characterized by positron annihilation lifetime spectroscopy. P I Mech. Eng. B-J. Eng. 2023, 237, 1036–1047. [Google Scholar] [CrossRef]
- Kluz, R.; Bucior, M.; Dzierwa, A.; Antosz, K.; Bochnowski, W.; Ochal, K. Effect of diamond burnishing on the properties of FSW joints of EN AW-2024 aluminum alloys. Appl. Sci. 2023, 13, 1305. [Google Scholar] [CrossRef]
- Huang, B.H.; Wang, L.; Liu, X.P.; Hui, L.; Cong, J.H.; Zhou, S. Effect of ultrasonic impact treatment on corrosion fatigue performance of friction stir welded 2024-T4 aluminum alloy. Corros. Eng. Sci. Techn. 2022, 57, 243–253. [Google Scholar] [CrossRef]
- Sik, A.; Önder, M. Comparison between mechanical properties and joint performance of AA 2024-O aluminium alloy welded by friction stir welding and TIG processes. Kovove. Mater. 2012, 50, 131–137. [Google Scholar] [CrossRef]
- Srivatsan, T.S.; Vasudevan, S.; Park, L. The tensile deformation and fracture behavior of friction stir welded aluminum alloy 2024. Mater. Sci. Eng. A 2007, 466, 235–245. [Google Scholar] [CrossRef]
- Pang, Q.; Zhang, J.H.; Huq, M.J.; Hu, Z.L. Characterization of microstructure, mechanical properties and formability for thermomechanical treatment of friction stir welded 2024-O alloys. Mater. Sci. Eng. A 2019, 765, 138303. [Google Scholar] [CrossRef]
- Yildiz, R.A. Explosive forming of precipitation-hardened aluminum alloy tubes. Combust. Explo. Shock. 2022, 58, 738–750. [Google Scholar] [CrossRef]
- Zhou, H.Y.; Mehta, K.P. Effect of materials positioning on dissimilar modified friction stir clinching between aluminum 5754-O and 2024-T3 sheets. Vacuum 2020, 178, 109445. [Google Scholar]
- Zhang, J.D.; Han, W.X.; Rui, W.L.; Li, J.H.; Huang, Z.Y.; Sui, F.L. Effect on corrosion resistance of microstructure of 316L austenitic stainless steel subjected to combined torsion-tension deformation. Int. J. Mater. Res. 2020, 111, 405–415. [Google Scholar] [CrossRef]
- Zhao, Y.L.; Yang, Z.Q.; Zhang, Z.; Su, G.Y.; Ma, X.L. Double-peak age strengthening of cold-worked 2024 aluminum alloy. Acta Mater. 2013, 61, 1624–1638. [Google Scholar] [CrossRef]
- Ott, N.; Kairy, S.K.; Yan, Y.M.; Birbilis, N. Evolution of grain boundary precipitates in an Al-Cu-Li alloy during aging. Metall. Mater. Trans. A 2017, 48A, 51–56. [Google Scholar] [CrossRef]
- Tan, P.; Liu, Z.Q.; Qin, J.; Wei, Q.R.; Wang, B.; Yi, D.Q. Enhanced corrosion performance by controlling grain boundary precipitates in a novel crossover Al-Cu-Zn-Mg alloy by optimizing Zn content. Mater. Charact. 2024, 208, 113615. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, Q.; Zhao, M.; Zhang, Z. The Effect of High-Temperature Deformation on the Mechanical Properties and Corrosion Resistance of the 2024 Aluminum Alloy Joint after Friction Stir Welding. Materials 2024, 17, 2969. https://doi.org/10.3390/ma17122969
Pang Q, Zhao M, Zhang Z. The Effect of High-Temperature Deformation on the Mechanical Properties and Corrosion Resistance of the 2024 Aluminum Alloy Joint after Friction Stir Welding. Materials. 2024; 17(12):2969. https://doi.org/10.3390/ma17122969
Chicago/Turabian StylePang, Qiu, Man Zhao, and Zhichao Zhang. 2024. "The Effect of High-Temperature Deformation on the Mechanical Properties and Corrosion Resistance of the 2024 Aluminum Alloy Joint after Friction Stir Welding" Materials 17, no. 12: 2969. https://doi.org/10.3390/ma17122969
APA StylePang, Q., Zhao, M., & Zhang, Z. (2024). The Effect of High-Temperature Deformation on the Mechanical Properties and Corrosion Resistance of the 2024 Aluminum Alloy Joint after Friction Stir Welding. Materials, 17(12), 2969. https://doi.org/10.3390/ma17122969