Pressureless Immersion of Epoxy Resin-Filled Cracks in Faulted Rock Materials
Abstract
:1. Introduction
2. Experiments
2.1. Strength Test Analysis of Epoxy Resin Casting Body at 0 °C
2.2. Strength Test Analysis of Epoxy Resin Casting Body at 20 °C
2.3. Strength Test Analysis of Epoxy Resin Casting Body at 15 °C
3. Conclusions
- As the temperature decreases, the curing time of the same proportion of epoxy grouting material increases. However, once the curing time reaches a certain threshold, the effect on the strength of the epoxy rock samples becomes less pronounced.
- Among different temperature conditions, the PSI (9:1) epoxy grouting material demonstrates superior enhancement of the F2 and F3 fault rock samples’ strength, yielding the best overall performance. Conversely, the RH-1 (6.1:1) epoxy grouting material exhibits unsatisfactory curing effects on the F2 and F3 samples under low-temperature conditions.
- Reducing the viscosity of the epoxy grouting material enhances the penetration effect on the samples. Compared to the HK-G (9:1) epoxy grouting material, the HK-G (5:1) epoxy grouting material leads to a strength enhancement of approximately 10 MPa in cured samples in the F3 fault rock.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Capricho, J.C.; Fox, B.; Hameed, N. Multifunctionality in epoxy resins. Polym. Rev. 2020, 60, 1–41. [Google Scholar] [CrossRef]
- Rahman, M.M.; Akhtarul Islam, M. Application of epoxy resins in building materials: Progress and prospects. Polym. Bull. 2022, 79, 1949–1975. [Google Scholar] [CrossRef]
- Juanjuan, Z.; Haiji, C. Preparation and properties of fast curing epoxy resin grouting materials. China Plast. 2020, 34, 6. [Google Scholar]
- Balguri, P.K.; Samuel, D.H.; Thumu, U. A review on mechanical properties of epoxy nanocomposites. Mater. Today Proc. 2021, 44, 346–355. [Google Scholar] [CrossRef]
- Peerzada, M.; Abbasi, S.; Lau, K.T.; Hameed, N. Additive manufacturing of epoxy resins: Materials, methods, and latest trends. Ind. Eng. Chem. Res. 2020, 59, 6375–6390. [Google Scholar] [CrossRef]
- Jin, F.-L.; Li, X.; Park, S.-J. Synthesis and application of epoxy resins: A review. J. Ind. Eng. Chem. 2015, 29, 1–11. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, C.; Xue, H.; Yi, K.; Liu, S. Rheological Properties of Epoxy-Grouting Materials for Early Cracks of Cast-In-Situ Concrete on Bridge Deck. J. Mater. Civ. Eng. 2023, 35, 04023282. [Google Scholar] [CrossRef]
- Wang, C.; Niu, L.; Zhang, H.; Xiao, X.; Liu, Z. Working performance and composition optimization of low-viscosity epoxy grouting material for cast-in-place cement concrete. J. Mater. Civ. Eng. 2022, 34, 04022196. [Google Scholar] [CrossRef]
- Yu, T.; Su, H.; Zhang, X. Study on influencing factors of leakage of epoxy resin grouting. IOP Conf. Ser. Earth Environ. Sci. 2021, 769, 032061. [Google Scholar] [CrossRef]
- Wang, J.; Wang, J.; Yang, S.; Chen, K. Single-component flame-retardant and smoke-suppressive epoxy resins enabled by an aluminum/phosphorus/imidazole-containing complex. Compos. Part B Eng. 2023, 253, 110571. [Google Scholar] [CrossRef]
- Hou, W.; Gao, Y.; Wang, J.; Blackwood, D.J.; Teo, S. Recent advances and future perspectives for graphene oxide reinforced epoxy resins. Mater. Today Commun. 2020, 23, 100883. [Google Scholar] [CrossRef]
- Guo, S.-Y.; Zhang, X.; Chen, J.-Z.; Mou, B.; Shang, H.-S.; Wang, P.; Zhang, L.; Ren, J. Mechanical and interface bonding properties of epoxy resin reinforced Portland cement repairing mortar. Constr. Build. Mater. 2020, 264, 120715. [Google Scholar] [CrossRef]
- Wang, C.; Zhang, D.; Chen, H.; Zhang, H.; Xiao, X.; Liu, Z. Preparation and properties of silicon-modified epoxy grouting material for repairing microcracks. J. Mater. Civ. Eng. 2022, 34, 04021479. [Google Scholar] [CrossRef]
- Wang, W.; Zhao, W.; Zhang, J.; Zhou, J. Epoxy-based grouting materials with super-low viscosities and improved toughness. Constr. Build. Mater. 2021, 267, 121104. [Google Scholar] [CrossRef]
- Wang, C.; Fan, Z.; Li, C.; Zhang, H.; Xiao, X. Preparation and engineering properties of low-viscosity epoxy grouting materials modified with silicone for microcrack repair. Constr. Build. Mater. 2021, 290, 123270. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Q. Investigation on fundamental properties and chemical characterization of water-soluble epoxy resin modified cement grout. Constr. Build. Mater. 2021, 299, 123877. [Google Scholar] [CrossRef]
- Zhang, X.; Lu, X.; Qiao, L.; Jiang, L.; Cao, T.; Zhang, Y. Developing an epoxy resin with high toughness for grouting material via co-polymerization method. e-Polymers 2019, 19, 489–498. [Google Scholar] [CrossRef]
- Liu, W.; Sun, Y.; Meng, X.; Qin, Y. Experimental analysis of Nano-SiO2 modified waterborne epoxy resin on the properties and microstructure of cement-based grouting materials. Energy 2023, 268, 126669. [Google Scholar] [CrossRef]
- Wenzhao, W.; Liwei, H.; Zhanqing, X.; Ping, F.; Xiaolong, P. Study on environmental friendly epoxy grouting material with low viscosity. New Build. Mater./Xinxing Jianzhu Cailiao 2022. [Google Scholar]
- Zhang, L.; Huang, C.; Li, Z.; Wang, A.; Gao, M.; Gao, Y.; Wang, X. Experimental Study on Water-Plugging Performance of Grouted Concrete Crack. Materials 2024, 17, 1568. [Google Scholar] [CrossRef]
- Su, Z.; Wang, Z.; Zhang, D.; Wei, T. Study on rheological behavior and surface properties of epoxy resin chemical grouting material considering time variation. Materials 2019, 12, 3277. [Google Scholar] [CrossRef]
- Li, H.; Yang, H.; Li, X. Investigation on the working performance of a non-dispersible grouting material for the crack repairment of underwater structures. Constr. Build. Mater. 2023, 407, 133558. [Google Scholar] [CrossRef]
- Xing, H.; Yang, X.; Dang, Y.; Yao, X.; Zhou, J. Experimental study of epoxy resin repairing of cracks in fractured rocks. Polym. Polym. Compos. 2014, 22, 459–466. [Google Scholar] [CrossRef]
- Cui, Y.; Tan, Z. Experimental study of high performance synchronous grouting materials prepared with clay. Materials 2021, 14, 1362. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, J.; Zhang, R.; Liu, E.; Xue, X.; Xing, X.; Zhang, Q. Effect of nano-Al2O3/epoxy resin composite on the shear strength recovery of fractured rock masses with various crack widths and SCA interfacial treatments. Case Stud. Constr. Mater. 2023, 18, e01715. [Google Scholar] [CrossRef]
- Rudawska, A.; Frigione, M.; Sarcinella, A.; Brunella, V.; Di Lorenzo, L.; Olewnik-Kruszkowska, E. Properties and Performance of Epoxy Resin/Boron Acid Composites. Materials 2024, 17, 2092. [Google Scholar] [CrossRef] [PubMed]
- Lyu, L.; Wen, F.; Lyu, T.; Zhou, X.; Gao, Y. Interfacial Modification and Bending Performance of 3D Orthogonal Woven Composites with Basalt Filament Yarns. Materials 2023, 16, 4015. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Cai, W.; Sheng, Y.; Huang, J. Experimental Study on the Microfabrication and Mechanical Properties of Freeze–Thaw Fractured Sandstone under Cyclic Loading and Unloading Effects. Materials 2024, 17, 2451. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, H.; Zhang, J.; Yu, S.; Maimaitiyusupu, S. Numerical Simulation Analysis of Fracture Propagation in Rock Based on Smooth Particle Hydrodynamics. Materials 2023, 16, 6560. [Google Scholar] [CrossRef]
Epoxy Resin Grout Brands | R&D Units |
---|---|
YDS | Guangzhou Institute of Chemistry, Chinese Academy of Sciences |
RH-1 | Ripar Technology Group |
PSI-501 | Pascal Limited |
TK | Guangdong Tieke Grouting Technology Co. |
HK-G | Hangzhou Guodian Hydropower Engineering Co. |
Epoxy Resin Grout Brands | Ratio (A:B) | Immersion Rock Sample |
---|---|---|
YDS | 100:6.4 | F2, F3 |
RH-1 | 6:1 | F2, F3 |
PSI-501 | 9:1 | F2, F3 |
TK | 100:8 | F2, F3 |
HK-G | 6:1 | F2, F3 |
Epoxy Resin Grout Brands | Ratio (A:B) | Immersion Rock Sample |
---|---|---|
YDS | 100:6.4 | F2, F3 |
RH-1 | 6:1 | F2, F3 |
PSI-501 | 9:1 | F2, F3 |
TK | 100:8 | F2, F3 |
HK-G | 5:1 | F2, F3 |
Brands | Ratio (A:B) | Gel Time/h | Curing Temperature | Sample | Compressive Strength /MPa | Maximum Test Force/KN | Sample | Compressive Strength/MPa | Maximum Test Force/KN |
---|---|---|---|---|---|---|---|---|---|
12.13 | 5.26 | 13.55 | 6.04 | ||||||
YDS | 100:6.4 | 680 (28 d) | 0 ℃ | F2 | 11.27 | 4.93 | F3 | 11.09 | 4.82 |
11.78 | 5.13 | 11.17 | 4.88 | ||||||
2.43 | 1.24 | 3.43 | 1.82 | ||||||
RH -1 | 6:1 | 70 (3 d) | 0 ℃ | F2 | 38.72 | 16.03 | F3 | 4.86 | 2.41 |
3.67 | 1.63 | 5.03 | 2.53 | ||||||
F2 | 19.14 | 8.36 | F3 | 19.03 | 8.28 | ||||
PSI-501 | 6:1 | 450 (19 d) | 0 ℃ | 13.35 | 5.93 | 18.13 | 7.83 | ||
11.4 | 4.94 | 22.69 | 9.62 | ||||||
16.19 | 6.73 | 17.55 | 7.53 | ||||||
TK | 100:8 | 470 (20 d) | 0 ℃ | F2 | 10.89 | 4.73 | F3 | 18.96 | 8.22 |
12.57 | 5.58 | 12.52 | 5.51 | ||||||
13.45 | 5.96 | 12.25 | 5.32 | ||||||
HK-G | 5:1 | 600 (25 d) | 0 ℃ | F2 | 11.27 | 4.89 | F3 | 15.21 | 6.56 |
13.56 | 6.12 | 16.74 | 7.06 |
Brands | Ratio (A:B) | Gel Time/h | Curing Temperature | Sample | Compressive Strength /MPa | Maximum Test Force/KN | Sample | Compressive Strength /MPa | Maximum Test Force/KN |
---|---|---|---|---|---|---|---|---|---|
18.55 | 8.01 | 23.41 | 9.91 | ||||||
YDS | 100:6.4 | 240 | 20 °C | F2 | 17.5 | 7.53 | F3 | 35.6 | 14.95 |
17.65 | 7.61 | 31.37 | 12.91 | ||||||
20.13 | 8.33 | 23.45 | 9.98 | ||||||
RH -1 | 6:1 | 24 | 20 °C | F2 | 23.14 | 9.71 | F3 | 22.76 | 9.63 |
18.85 | 8.12 | 25.10 | 10.79 | ||||||
F2 | 22.36 | 9.57 | F3 | 29.18 | 12.36 | ||||
PSI-501 | 6:1 | 84 | 20 °C | 26.52 | 11.03 | 39.8 | 16.23 | ||
29.03 | 11.94 | 35.59 | 14.55 | ||||||
15.56 | 6.58 | 25.38 | 10.58 | ||||||
TK | 100:8 | 85 | 20 °C | F2 | 17.69 | 7.62 | F3 | 18.88 | 8.18 |
20.23 | 8.44 | 19.76 | 8.38 | ||||||
20.84 | 8.53 | 25.48 | 10.61 | ||||||
HK-G | 5:1 | 30 | 20 °C | F2 | 16.8 | 7.04 | F3 | 22.85 | 9.84 |
12.22 | 5.23 | 22.18 | 9.43 |
Brand | Ratio (A:B) | Gel Time/h | Curing Temperature | Sample | Compressive Strength /MPa | Maximum Test Force/KN | Sample | Compressive Strength /MPa | Maximum Test Force/KN |
---|---|---|---|---|---|---|---|---|---|
15.90 | 6.63 | 15.66 | 6.59 | ||||||
YDS | 100:6.4 | 300 (13 d) | 15 °C | F2 | 16.06 | 6.78 | F3 | 11.75 | 5.12 |
9.11 | 4.31 | 14.36 | 6.14 | ||||||
15.01 | 6.53 | 25.67 | 10.82 | ||||||
RH -1 | 6:1 | 82 | 15 °C | F2 | 23.57 | 10.01 | F3 | 35.24 | 14.35 |
20.6 | 9.09 | 27.73 | 11.68 | ||||||
F2 | 13.34 | 5.93 | F3 | 18.5 | 7.96 | ||||
PSI-501 | 6:1 | 140 (5 d) | 15 °C | 16.35 | 6.98 | 11.98 | 5.16 | ||
14.07 | 6.22 | 26.16 | 10.84 | ||||||
15.98 | 6.67 | 21.69 | 9.19 | ||||||
HK-G | 5:1 | 140 (5 d) | 15 °C | F2 | 14.06 | 6.22 | F3 | 17.41 | 7.42 |
16.32 | 6.93 | 18.31 | 7.84 | ||||||
8.45 | 3.76 | 8.33 | 3.26 | ||||||
HK-G | 9:1 | 160 (7 d) | 15 °C | F2 | 6.59 | 2.61 | F3 | 7.21 | 3.23 |
9.13 | 4.09 | 6.74 | 2.77 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, K.; She, Y.; Chen, J.; Cai, X.; Wu, Y. Pressureless Immersion of Epoxy Resin-Filled Cracks in Faulted Rock Materials. Materials 2024, 17, 3111. https://doi.org/10.3390/ma17133111
Yu K, She Y, Chen J, Cai X, Wu Y. Pressureless Immersion of Epoxy Resin-Filled Cracks in Faulted Rock Materials. Materials. 2024; 17(13):3111. https://doi.org/10.3390/ma17133111
Chicago/Turabian StyleYu, Kui, Yong She, Jibing Chen, Xionghui Cai, and Yiping Wu. 2024. "Pressureless Immersion of Epoxy Resin-Filled Cracks in Faulted Rock Materials" Materials 17, no. 13: 3111. https://doi.org/10.3390/ma17133111
APA StyleYu, K., She, Y., Chen, J., Cai, X., & Wu, Y. (2024). Pressureless Immersion of Epoxy Resin-Filled Cracks in Faulted Rock Materials. Materials, 17(13), 3111. https://doi.org/10.3390/ma17133111