Wire Arc Additive Manufacturing of Aluminum Foams Using TiH2-Laced Welding Wires
Abstract
:1. Introduction
- Elastic deformation, where compression and compressive stress are proportional to each other.
- Formation of a stress plateau, where the compressive stress remains nearly constant (ideally).
- Compression range, where the compressive stress increases sharply again.
- Wire-based additive processes can achieve significantly higher deposition rates, benefiting productivity and cost-effectiveness.
- The technological basis for WAAM is Metal Inert Gas Welding (MIG). This means that no powder bed is required, and additive structures can be printed on any weldable aluminum substrate (including already existing components).
2. Materials and Methods
2.1. Manufacture of Metal-Cored Welding Wires (Electrodes 1 and 2)
2.2. Manufacture of Welding Wires via Continuous Powder Extrusion Process (Electrodes 3 and 4)
2.3. Weld Processing of TiH2-Laced Welding Wired
2.4. Methods of Analysis
3. Results and Discussion
3.1. Porosity in Single Deposition Weld Beads
3.2. Porosity and Mechanical Properties of Three-Dimensional Block Structures
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Pandey, R.; Singh, P.; Khanna, M.; Manufacturing, Q.M.M.F. Mechanical Properties and Its Designing Aspects—A Review. In Proceedings of the ICAPIE 2019: Advances in Manufacturing and Industrial Engineering, Delhi, India, 21–22 December 2019. [Google Scholar]
- Wan, T.; Liu, Y.; Chen, X.; Li, Y. Fabrication, properties, and applications of open-cell aluminum foams: A review. J. Mater. Sci. Technol. 2021, 62, 11–24. [Google Scholar] [CrossRef]
- Nisa, S.U.; Pandey, S.; Pandey, P.M. A review of the compressive properties of closed-cell aluminum metal foams. J. Process Mech. Eng. 2022, 237, 531–545. [Google Scholar] [CrossRef]
- Byakova, A.; Gnyloskurenko, S.; Vlasov, A.; Yevych, Y.; Semenov, N. The Mechanical Performance of Aluminum Foam Fabricated by Melt Processing with Different Foaming Agents: A Comparative Analysis. Metals 2022, 12, 1384. [Google Scholar] [CrossRef]
- Yu, C.-J.; Banhart, J. Mechanical Properties of Metal Faoms. Bremen. 1998. Available online: https://www.researchgate.net/publication/283363376_Mechanical_properties_of_metal_foams/ (accessed on 15 May 2024).
- DIN 50134:2008-10; Prüfung von Metallischen Werkstoffen—Druckversuch an Metallischen Zellularen Werkstoffen. Beuth Verlag GmbH: Berlin, Germany, 2008.
- Ji, C.; Huang, H.; Wang, T.; Huang, Q. Recent advances and future trends in processing methods and characterization technologies of aluminum foam composite structures: A review. J. Manuf. Process. 2023, 93, 116–152. [Google Scholar] [CrossRef]
- Parveez, B.; Jamal, N.A.; Anuar, H.; Ahmad, A.; Aabid, A.; Baig, M. Microstructure and Mechanical Properties of Metal Foams Fabricated via Melt Foaming and Powder Metallurgy Technique: A Review. Materials 2022, 15, 5302. [Google Scholar] [CrossRef] [PubMed]
- Hommel, P.; Roth, D.; Binz, H. Deficits in the Application of Aluminum Foam Sandwich: An Industrial Perspective. In Proceedings of the Design Society: Design Conference, Cambridge, UK, 26–29 October 2020; Volume 1. [Google Scholar]
- Treutler, K.; Wesling, V. The Current State of Research of Wire Arc Additive Manufacturing (WAAM): A Review. Appl. Sci. 2021, 11, 8619. [Google Scholar] [CrossRef]
- Feng, X.; Zhang, Z.; Cui, X.; Jin, G.; Zheng, W.; Liu, H. Additive manufactured closed-cell aluminum alloy foams via laser melting deposition process. Mater. Lett. 2018, 233, 126–129. [Google Scholar] [CrossRef]
- Shim, D.-S. Effects of process parameters on additive manufacturing of aluminum porous materials and their optimization using response surface method. J. Mater. Res. Technol. 2021, 15, 119–134. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, C.; Huang, Y. Laser additive manufacturing foam aluminium-12 wt-% silicon with different addition TiH2 foaming agent. Mater. Sci. Technol. 2017, 34, 968–981. [Google Scholar] [CrossRef]
- Ren, D.; Ba, X.; Zhang, Z.; Zhang, Z.; Zhao, K.; Liu, L. Wire arc additive manufacturing of porous metal using welding pore defects. Mater. Des. 2023, 233, 112213. [Google Scholar] [CrossRef]
- An, J.; Chen, C.; Zhang, M. Effect of CaCO3 content change on the production of closed-cell aluminum foam by selective laser melting. Opt. Laser Technol. 2021, 141, 107097. [Google Scholar] [CrossRef]
- Byakova, A.; Gnyloskurenko, S.; Sirko, A. The Role of Foaming Agent in Structure and Mechanical Performance of Al Based Foams. Mater. Trans. Spec. Issue Porous Foam. Met.—Fabr. Charact. Prop. Appl. 2006, 47, 2131–2136. [Google Scholar] [CrossRef]
- Hauser, T.; Reisch, R.T.; Kaplan, A.F.H. Porosity in wire arc additive manufacturing of aluminium alloys. Addit. Manuf. 2021, 41, 101993. [Google Scholar] [CrossRef]
- ISO/TR 18491:2015-05; Welding and Allied Processes–Guidelines for Measurement of Welding Energies. Beuth Verlag: Berlin, Germany, 2015.
- Neue Materialien Fürth GmbH. Temconex (R)-Technologie. September 2018. Available online: https://nmfgmbh.de/wp-content/uploads/2018/08/180814_Temconex_deutsch.pdf (accessed on 13 December 2023).
- DIN EN 485-2:2018-12; Aluminium and Aluminium Alloys—Sheet, Strip and Plate—Part 2: Mechanical Properties. German version EN 485-2:2016+A1:2018; Beuth Verlag GmbH: Berlin, Germany, 2018.
- DIN ISO 3923-2:1987-08; Metallic Powders—Determination of Apparten Denisty; Scott Volumeter Method; Identical to ISO 3923/2. Beuth Verlag GmbH: Berlin, Germany, 1987.
- DIN EN ISO 4490:2018; Metallic Powders—Determination of Flow Rate by Means of a Calibrated Funne (Hall Flowmeter). Beuth Verlag GmbH: Berlin, Germany, 2018.
- DIN EN 573-3:2024-03; Aluminium and Aluminium Alloys—Chemical Composition and Form of Wrought Products—Part 3: Chemical Composition and Form of Products. German Version EN 573-3:2019+A2:2023; Beuth Verlag GmbH: Berlin, Germany, 2024.
- Binz, H.; Honold, C.; Bauernhansl, T.; Konstruktion, M.S. Herstellung eines Auslegers aus Aluminiumschaum-Sandwich unter Anwendung der Fräskanttechnik. VDI Fachmedien GmbH & Co. KG Unternehmen für Fachinformationen, 1 August 2018. Available online: https://www.ingenieur.de/fachmedien/konstruktion/werkstoffe/konstruktion-und-herstellung-eines-auslegers-aus-aluminiumschaum-sandwich-unter-anwendung-der-fraeskanttechnik/ (accessed on 1 March 2024).
Author | Ref. | Manufacturing Process | Alloy | Gas Injection Via | Porosity [%] |
---|---|---|---|---|---|
Feng et al. | [11] | Laser powder deposition welding | AlSi10Mg | Ni-coated TiH2 (4–11.5 wt.%) | 36–70 |
Shim et al. | [12] | Laser powder deposition welding | AlSi12 | ZrH2 (10–40 wt.%) | 0.1–24.8 |
Zhang et al. | [13] | Selective laser melting | AlSi12 | TiH2 (5–10 wt.%) | 22–38 |
Ren et al. | [14] | Wire Arc Additive Manufacturing | Er50-6 (low carbon steel) | shielding gas (80% Ar, 20% CO2) + air | 64–87 |
An et al. | [15] | Selective laser melting | AlSi12 | CaCO3 (5–15 wt.%) | 26.9–39.6 |
No. | Strip Material | Powder Filling (wt.%) | Filling Degree [wt.%] | Amount of TiH2 [wt.%] | Type of Metal-Cored Wire |
1 | AlMg1 (10 × 0.5 mm) | AlSi10Mg + 10% TiH2 | 33 | 3.3 | Seamed/straight limbs |
2 | Al99.5 (8 × 0.29 mm) | Al + 16% TiH2 + 33.8% Al2O2 | 27 | 4.3 | Seamed/overlapping |
No. | Composition of powder mixture [wt.%] | Particle size [µm] | Amount of TiH2 [wt.%] | Process/type | |
3 | AlMg1Si0.6 + 0.8 TiH2 | +63/−150 | 0.8 | Solid wire Electrode/ continuously extruded | |
4 | AlSi10 + 0.8% TiH2 | <500 | 0.8 |
Electrode | Substrate | Geometries | Contact Tube Distance [mm] | Shielding Gas | Position | vs [cm/min] | vD [m/min] | EW [kJ/cm] |
---|---|---|---|---|---|---|---|---|
1 | AlMg3, 150 × 150 × 3 mm | Single beads; block structures | 18 | Ar 4.7 (15–17 L/min) | PA | 600–1000 | 4–8 | 0.80–1.37 |
2 | 500–1000 | 5–7 | 0.94–2.42 | |||||
3 | 500–1000 | 6–8 | 1.24–3.32 | |||||
4 | 600–1000 | 5–6 | 0.90–1.82 |
Electrode | Number of samples | ρ [g/cm3] | ρrel [%] | P3D [%] | RPlt [N/mm2] | EV [MJ/m3] |
1 | 3 | 1.51–1.89 | 56–70 | 30–44 | 124–143 | 37.8–43.4 |
3 | 4 | ≈1.58 | ≈59 | ≈41 | 113–122 | 34.3–37.1 |
4 | 3 | 1.53–1.59 | 57–59 | 41–43 | 124–137 | 35.3–40.4 |
Reference values taken from [3] (p. 10) with respective manufacturing method | ||||||
Manufacturing method | ρ [g/cm3] | ρrel [%] | P [%] | RPlt [N/mm2] | EV [MJ/m3] | |
Modified alporas route | - | 13.4–47.2 | 52.8–86.6 | 2.8–23.5 | 1.7–18.9 | |
As recieved Alulight | - | 10–50 | 50–90 | 3.3–12.7 | - | |
Dynamic gas injection | - | 29.1 | 70.9 | 21.6 | 11.1 | |
Closed-cell aluminum composite foams (reinforced by CNTs) manufactured via friction stir welding | - | 54.2–69.8 | 30.2–45.8 | - | 6.63–11.45 |
Electrode No. | 1 | 2 | 3 | 4 |
---|---|---|---|---|
Welding process realizable (energy rediced short arc) | Yes | Limited | Yes | Limited |
Suitability for single layer deposition welding | Yes | No | Yes | Limited |
Porosity in single weld bead (P2D [%]) | 16–59 | - | 37–51 | 28–50 |
Suitability for WAAM process with multiple layers | Limited | No | Yes | No |
Porosity in block structure (P3D [%]) | 30–44 | - | ≈41 | 41–43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Köhler, M.; Nikitin, A.; Sonnenfeld, P.; Ossenbrink, R.; Jüttner, S. Wire Arc Additive Manufacturing of Aluminum Foams Using TiH2-Laced Welding Wires. Materials 2024, 17, 3176. https://doi.org/10.3390/ma17133176
Köhler M, Nikitin A, Sonnenfeld P, Ossenbrink R, Jüttner S. Wire Arc Additive Manufacturing of Aluminum Foams Using TiH2-Laced Welding Wires. Materials. 2024; 17(13):3176. https://doi.org/10.3390/ma17133176
Chicago/Turabian StyleKöhler, Marcel, Alexander Nikitin, Peter Sonnenfeld, Ralf Ossenbrink, and Sven Jüttner. 2024. "Wire Arc Additive Manufacturing of Aluminum Foams Using TiH2-Laced Welding Wires" Materials 17, no. 13: 3176. https://doi.org/10.3390/ma17133176
APA StyleKöhler, M., Nikitin, A., Sonnenfeld, P., Ossenbrink, R., & Jüttner, S. (2024). Wire Arc Additive Manufacturing of Aluminum Foams Using TiH2-Laced Welding Wires. Materials, 17(13), 3176. https://doi.org/10.3390/ma17133176