Influence of Silica Modulus on the Activation of Amorphous Wollastonitic Hydraulic Binders with Different Alumina Content: Study of Hydration Reaction and Paste Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Binder Production
2.2. Production of the Pastes: Activation Conditions
2.3. Isothermal Calorimetry
2.4. Compressive Strength Tests
2.5. FTIR Analyses
2.6. XRD Analyses
2.7. Thermogravimetric Analysis
3. Results
3.1. Isothermal Calorimetry
3.2. Compressive Strength Results in Pastes
3.3. FTIR Results
- 1700–1300 cm−1, CO32− characteristic bands at 1450 cm−1 attributed to asymmetric stretching mode [45].
3.4. XRD Results
3.5. TGA Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission; Directorate-General for Internal Market, Industry, Entrepreneurship; SMEs. Competitiveness of the European Cement and Lime—Final Report; EU Publications: Luxembourg, 2017. [Google Scholar] [CrossRef]
- Supino, S.; Malandrino, O.; Testa, M.; Sica, D. Sustainability in the EU Cement Industry: The Italian and German Experiences. J. Clean. Prod. 2016, 112, 430–442. [Google Scholar] [CrossRef]
- Scrivener, K.L.; John, V.M.; Gartner, E.M. Eco-Efficient Cements: Potential Economically Viable Solutions for a Low-CO2 Cement-Based Materials Industry. Cem. Concr. Res. 2018, 114, 2–26. [Google Scholar] [CrossRef]
- Freitas, A.A.; Santos, R.L.; Colaço, R.; Bayão Horta, R.; Canongia Lopes, J.N. From Lime to Silica and Alumina: Systematic Modeling of Cement Clinkers Using a General Force-Field. Phys. Chem. Chem. Phys. 2015, 17, 18477–18494. [Google Scholar] [CrossRef] [PubMed]
- Chappex, T.; Scrivener, K.L. The Influence of Aluminium on the Dissolution of Amorphous Silica and Its Relation to Alkali Silica Reaction. Cem. Concr. Res. 2012, 42, 1645–1649. [Google Scholar] [CrossRef]
- Rahman, A.; Ekaputri, J.J. The Effect of Additional Aluminium to the Strength of Geopolymer Paste. In Proceedings of the 4th International Conference on Rehabilitation and Maintenance in Civil Engineering (ICRMCE 2018), Solo, Indonesia, 11–12 July 2018; Volume 195, p. 01011. [Google Scholar] [CrossRef]
- Jan, A.; Pu, Z.; Khan, K.A.; Ahmad, I.; Shaukat, A.J.; Hao, Z.; Khan, I. A Review on the Effect of Silica to Alumina Ratio, Alkaline Solution to Binder Ratio, Calcium Oxide + Ferric Oxide, Molar Concentration of Sodium Hydroxide and Sodium Silicate to Sodium Hydroxide Ratio on the Compressive Strength of Geopolymer Concrete. Silicon 2022, 14, 3147–3162. [Google Scholar] [CrossRef]
- Horta, R.S.B.; Colaço, R.A.C.; Lopes, J.N.A.; Santos, R.L.; Pereira, J.C.; Rocha, P.J.P.; Lebreiro, S.M.M. Amorphous Low-Calcium Content Silicate Hydraulic Binders and Methods for Their Manufacturing. U.S. Patent US10414690B2, 19 January 2015. [Google Scholar]
- Santos, R.L.; Horta, R.B.; Pereira, J.; Nunes, T.G.; Rocha, P.; Lopes, J.N.C.; Colaço, R. Novel High-Resistance Clinkers with 1.10<CaO/SiO2<1.25 : Production Route and Preliminary Hydration Characterization. Cem. Concr. Res. 2016, 85, 39–47. [Google Scholar] [CrossRef]
- Santos, R.L.; Horta, R.B.; Al, E. Alkali Activation of a Novel Calcium-Silicate Hydraulic Binder. Am. Ceram. Soc. 2018, 101, 4158–4170. [Google Scholar] [CrossRef]
- Winnefeld, F.; Haha, B.; Le Saout, G.; Costoya, M.; Ko, S.-C.; Lothenbach, B. Influence of Slag Composition on the Hydration of Alkali-Activated Slags. J. Sustain. Cem. Mater. 2015, 4, 85–100. [Google Scholar] [CrossRef]
- Haha, M.B.; Lothenbach, B.; Le Saout, G.; Winnefeld, F. Influence of Slag Chemistry on the Hydration of Alkali-Activated Blast-Furnace Slag—Part II: Effect of Al2O3. Cem. Concr. Res. 2012, 42, 74–83. [Google Scholar] [CrossRef]
- Renaudin, G.; Russias, J.; Leroux, F.; Frizon, F.; Cau-dit-Coumes, C. Structural Characterization of C-S-H and C-A-S-H Samples-Part I: Long-Range Order Investigated by Rietveld Analyses. J. Solid State Chem. 2009, 182, 3312–3319. [Google Scholar] [CrossRef]
- Puertas, F.; Palacios, M.; Manzano, H.; Dolado, J.S.; Rico, A.; Rodríguez, J. A Model for the C-A-S-H Gel Formed in Alkali-Activated Slag Cements. J. Eur. Ceram. Soc. 2011, 31, 2043–2056. [Google Scholar] [CrossRef]
- Pardal, X.; Brunet, F.; Charpentier, T.; Pochard, I.; Nonat, A. 27Al and 29Si Solid-State NMR Characterization of Calcium-Aluminosilicate-Hydrate. Inorg. Chem. 2012, 51, 1827–1836. [Google Scholar] [CrossRef] [PubMed]
- Degefu, D.M.; Berardi, U. Effect of Na/Al and Curing Moisture Conditions on Sodium Aluminosilicate Hydrate (N–A–S–H) Geopolymers’ Hydric Properties. Constr. Build. Mater. 2024, 425, 135985. [Google Scholar] [CrossRef]
- Liu, T.; Chen, Y.; Yuan, B.; Zhuang, W.; Brouwers, H.J.H.; Yu, Q. Sodium Aluminate Activated Waste Glass: Reduced Efflorescence Behavior by C(N)–A–S–H Transformation. Cem. Concr. Res. 2024, 181, 107527. [Google Scholar] [CrossRef]
- Yaakob, S.M.; Rabat, N.E.; Sufian, S. Effects of Na: Al and Water: Solid Ratios on the Mechanical Properties of Fly Ash Based Geopolymer. IOP Conf. Ser. Mater. Sci. Eng. 2018, 458, 2794–2805. [Google Scholar] [CrossRef]
- Yan, Y.; Ma, B.; Miron, G.D.; Kulik, D.A.; Scrivener, K.; Lothenbach, B. Al Uptake in Calcium Silicate Hydrate and the Effect of Alkali Hydroxide. Cem. Concr. Res. 2022, 162, 106957. [Google Scholar] [CrossRef]
- Leonelli, C.; Palomo, Á.; Luukkonen, T. Alkali-Activated Materials in Environmental Technology, 1st ed.; Luukkonen, T., Ed.; Woodhead Publishing Series in Civil and Structural Engineering: Cambridge, UK, 2022; ISBN 9780323884389. [Google Scholar]
- Zhu, X.; Richardson, I.G. Morphology-Structural Change of C-A-S-H Gel in Blended Cements. Cem. Concr. Res. 2023, 168, 107156. [Google Scholar] [CrossRef]
- Sun, B.; Ye, G.; de Schutter, G. A Review: Reaction Mechanism and Strength of Slag and Fly Ash-Based Alkali-Activated Materials. Constr. Build. Mater. 2022, 326, 126843. [Google Scholar] [CrossRef]
- Ashraf, W. Microstructure of Chemically Activated of Gamma-Dicalcium Silicate Paste. Constr. Build. Mater. 2018, 185, 617–627. [Google Scholar] [CrossRef]
- Yan, Y.; Yang, S.Y.; Miron, G.D.; Collings, I.E.; L’Hôpital, E.; Skibsted, J.; Winnefeld, F.; Scrivener, K.; Lothenbach, B. Effect of Alkali Hydroxide on Calcium Silicate Hydrate (C-S-H). Cem. Concr. Res. 2022, 151, 106636. [Google Scholar] [CrossRef]
- Mierzwiński, D.; Walter, J.; Olkiewicz, P. The Influence of Alkaline Activator Concentration on the Apparent Activation Energy of Alkali-Activated Materials. In Proceedings of the MATBUD’2020—Scientific-Technical Conference: E-Mobility, Sustainable Materials and Technologies, Cracow, Poland, 19–21 October 2020; Volume 322, p. 01008. [Google Scholar] [CrossRef]
- Bondar, D.; Lynsdale, C.J.; Milestone, N.B.; Hassani, N.; Ramezanianpour, A.A. Effect of Type, Form, and Dosage of Activators on Strength of Alkali-Activated Natural Pozzolans. Cem. Concr. Compos. 2011, 33, 251–260. [Google Scholar] [CrossRef]
- Aydın, S.; Baradan, B. Composites: Part B Effect of Activator Type and Content on Properties of Alkali-Activated Slag Mortars. Compos. Part B Eng. 2014, 57, 166–172. [Google Scholar] [CrossRef]
- Ben Haha, M.; Le Saout, G.; Winnefeld, F.; Lothenbach, B. Influence of Activator Type on Hydration Kinetics, Hydrate Assemblage and Microstructural Development of Alkali Activated Blast-Furnace Slags. Cem. Concr. Res. 2011, 41, 301–310. [Google Scholar] [CrossRef]
- Puertas, F. Alkaline Activation of Different Aluminosilicates as an Alternative to Portland Cement: Alkali Activated Cements or Geopolymers. Rev. Ing. Constr. 2017, 32, 5–12. [Google Scholar]
- Abdullah, M.M.A.; Kamarudin, H.; Mohammed, H.; Khairul Nizar, I.; Rafiza, A.R.; Zarina, Y. The Relationship of NaOH Molarity, Na2SiO3/NaOH Ratio, Fly Ash/Alkaline Activator Ratio, and Curing Temperature to the Strength of Fly Ash-Based Geopolymer. Adv. Mat. Res. 2011, 328–330, 1475–1482. [Google Scholar] [CrossRef]
- França, S.; de Moura Solar Silva, M.V.; Ribeiro Borges, P.H.; da Silva Bezerra, A.C. A Review on Some Properties of Alkali-Activated Materials. Innov. Infrastruct. Solut. 2022, 7, 179. [Google Scholar] [CrossRef]
- Wang, S.-D.; Scrivener, K.L.; Pratt, P.L. Factors Affecting the Strength of Alklai-Activated Slag. Cem. Concr. Res. 1994, 24, 1033–1043. [Google Scholar] [CrossRef]
- Nodehi, M.; Taghvaee, V.M. Alkali-Activated Materials and Geopolymer: A Review of Common Precursors and Activators Addressing Circular Economy. Circ. Econ. Sustain. 2022, 2, 165–196. [Google Scholar] [CrossRef]
- Brough, A.R.; Atkinson, A. Sodium Silicate-Based, Alkali-Activated Slag Mortars—Part I. Strength, Hydration and Microstructure. Cem. Concr. Res. 2002, 32, 865–879. [Google Scholar] [CrossRef]
- Luukkonen, T.; Sreenivasan, H.; Abdollahnejad, Z.; Yliniemi, J.; Kantola, A.; Telkki, V.V.; Kinnunen, P.; Illikainen, M. Influence of Sodium Silicate Powder Silica Modulus for Mechanical and Chemical Properties of Dry-Mix Alkali-Activated Slag Mortar. Constr. Build. Mater. 2020, 233, 117354. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. Cement and Concrete Research One-Part Alkali-Activated Materials: A Review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Cho, Y.K.; Yoo, S.W.; Jung, S.H.; Lee, K.M.; Kwon, S.J. Effect of Na2O Content, SiO2/Na2O Molar Ratio, and Curing Conditions on the Compressive Strength of FA-Based Geopolymer. Constr. Build. Mater. 2017, 145, 253–260. [Google Scholar] [CrossRef]
- Sun, J.; Hou, S.; Guo, Y.; Wei, H.; Jiuwen, B.; Yifei, C.; Peng, Z. Sustainable Utilization of Alkali-Activated Steel Slag Material: Effects of Silicate Modulus and GBFS on Fresh, Mechanical and Pore Structure Properties. Dev. Built Environ. 2024, 18, 100410. [Google Scholar] [CrossRef]
- Cihangir, F.; Ercikdi, B.; Kesimal, A.; Ocak, S.; Akyol, Y. Effect of Sodium-Silicate Activated Slag at Different Silicate Modulus on the Strength and Microstructural Properties of Full and Coarse Sulphidic Tailings Paste Backfill. Constr. Build. Mater. 2018, 185, 555–566. [Google Scholar] [CrossRef]
- Caron, R.; Patel, R.A.; Miron, G.D.; Le Galliard, C.; Lothenbach, B.; Dehn, F. Microstructure Development of Slag Activated with Sodium Silicate Solution: Experimental Characterization and Thermodynamic Modeling. J. Build. Eng. 2023, 71, 106398. [Google Scholar] [CrossRef]
- Antunes, M.; Santos, R.L.; Pereira, J.; Horta, R.B.; Colaço, R. The Use of Solid Sodium Silicate as Activator for an Amorphous Wollastonitic Hydraulic Binder. Materials 2024, 17, 626. [Google Scholar] [CrossRef] [PubMed]
- Antunes, M.; Santos, R.L.; Horta, R.B.; Colaço, R. Novel Amorphous-Wollastonitic Low-Calcium Hydraulic Binders: A State-of-the-Art Review. Materials 2023, 16, 4874. [Google Scholar] [CrossRef] [PubMed]
- Santos, R.L. New Hydraulic Binders with Low Calcium Content. Ph.D. Thesis, Universidade de Lisboa, Lisbon, Portugal, 2016. [Google Scholar]
- Ellerbrock, R.; Stein, M.; Schaller, J. Comparing Amorphous Silica, Short-Range-Ordered Silicates and Silicic Acid Species by FTIR. Sci. Rep. 2022, 12, 11708. [Google Scholar] [CrossRef]
- Husung, R.D.; Doremus, R.H. The Infrared Transmission Spectra of Four Silicate Glasses before and after Exposure to Water. J. Mater. Res. 1990, 5, 2209–2217. [Google Scholar] [CrossRef]
- Pérez-Casas, J.A.; Zaldívar-Cadena, A.A.; Álvarez-Mendez, A.; Ruiz-Valdés, J.J.; Parra-Arciniega, S.M.D.L.; López-Pérez, D.C.; Sánchez-Vázquez, A.I. Sugarcane Bagasse Ash as an Alternative Source of Silicon Dioxide in Sodium Silicate Synthesis. Materials 2023, 16, 6327. [Google Scholar] [CrossRef]
- Garcia, M.D. Synthesis by Supercritical Fluids Methods of Advanced Additions for Cementitious Materials. Ph.D. Thesis, Université de Bordeaux, Nouvelle-Aquitaine, France, 2018. [Google Scholar]
- Ping, Y.; Kirkpatrick, R.J.; Brent, P.; McMillan, P.F.; Cong, X. Structure of Calcium Silicate Hydrate (C-S-H): Near-, Mid-, and Far-Infrared Spectroscopy. J. Am. Ceram. Soc. 1999, 82, 742–748. [Google Scholar] [CrossRef]
- Lin, J.; Zhang, Y.; Yang, Z. A Review of Recent Advances in Alkali-Activated Materials from Silica-Rich Wastes Derived Sodium Silicate Activators. J. Adv. Concr. Technol. 2023, 21, 189–203. [Google Scholar] [CrossRef]
- Kalampounias, A.G. IR and Raman Spectroscopic Studies of Sol-Gel Derived Alkaline-Earth Silicate Glasses. Bull. Mater. Sci. 2011, 34, 299–303. [Google Scholar] [CrossRef]
- Hughes, T.L.; Methven, C.M.; Jones, T.G.J.; Pelham, S.E.; Fletcher, P.; Hall, C. Determining Cement Composition by Fourier Transform Infrared Spectroscopy. Adv. Cem. Based Mater. 1995, 2, 91–104. [Google Scholar] [CrossRef]
- Bosch Reig, F.; Adelantado, J.V.G.; Moreno, M.C.M.M. FTIR Quantitative Analysis of Calcium Carbonate (Calcite) and Silica (Quartz) Mixtures Using the Constant Ratio Method. Application to Geological Samples. Talanta 2002, 16, 811–821. [Google Scholar] [CrossRef] [PubMed]
- Singh, N.B.; Das, S.S.; Singh, P.; Dwivedi, N. Studies on SCLA Composite Portland Cement. Indian J. Eng. Mater. Sci. 2009, 16, 415–422. [Google Scholar]
- Arioz, E.; Arioz, O.; Kockar, O.M. Geopolymer Synthesis with Low Sodium Hydroxide Concentration. Iran. J. Sci. Technol. Trans. Civ. Eng. 2020, 44, 525–533. [Google Scholar] [CrossRef]
- Handayani, L.; Aprilia, S.; Abdullah; Rahmawati, C.; Aulia, T.B.; Ludvig, P.; Ahmad, J. Sodium Silicate from Rice Husk Ash and Their Effects as Geopolymer Cement. Polymers 2022, 14, 2920. [Google Scholar] [CrossRef] [PubMed]
- García Lodeiro, I.; Macphee, D.E.; Palomo, A.; Fernández-Jiménez, A. Effect of Alkalis on Fresh C-S-H Gels. FTIR Analysis. Cem. Concr. Res. 2009, 39, 147–153. [Google Scholar] [CrossRef]
- Richardson, I.G. Model Structures for C-(A)-S-H(I). Acta Crystallogr. B Struct. Sci. Cryst. Eng. Mater. 2014, 70, 903–923. [Google Scholar] [CrossRef]
- Bagheri, M.; Lothenbach, B.; Shakoorioskooie, M.; Scrivener, K. Effect of Different Ions on Dissolution Rates of Silica and Feldspars at High PH. Cem. Concr. Res. 2022, 152, 106644. [Google Scholar] [CrossRef]
- Dupuis, R.; Rodrigues, D.G.; Champenois, J.B.; Pellenq, R.J.M.; Poulesquen, A. Time Resolved Alkali Silicate Decondensation by Sodium Hydroxide Solution. J. Phys. Mater. 2020, 3, 014012. [Google Scholar] [CrossRef]
- Visser, J.; Garzon-Amortegui, J.; Nijland, T.; Hermanns, S. Microstructure and Performance of Three Silicate Binders in the Range CSH-CASH-NAS. In International RILEM Conference on Synergising Expertise towards Sustainability and Robustness of Cement-Based Materials and Concrete Structures; Springer Science and Business Media B.V.: Berlin/Heidelberg, Germany, 2023; Volume 44, pp. 1185–1196. [Google Scholar]
- Zuo, Y.; Ye, G. Preliminary Interpretation of the Induction Period in Hydration of Sodium Hydroxide/Silicate Activated Slag. Materials 2020, 13, 4796. [Google Scholar] [CrossRef]
- Sun, X.; Zhao, Y.; Qiu, J.; Xing, J. Review: Alkali-Activated Blast Furnace Slag for Eco-Friendly Binders. J. Mater. Sci. 2022, 57, 1599–1622. [Google Scholar] [CrossRef]
- Provis, J.L.; Duxson, P.; Lukey, G.C.; Separovic, F.; Kriven, W.M.; Van Deventer, J.S.J. Modeling Speciation in Highly Concentrated Alkaline Silicate Solutions. Ind. Eng. Chem. Res. 2005, 44, 8899–8908. [Google Scholar] [CrossRef]
- Ouyang, X.; Ma, Y.; Liu, Z.; Liang, J.; Ye, G. Effect of the Sodium Silicate Modulus and Slag Content on Fresh and Hardened Properties. Minerals 2019, 10, 15. [Google Scholar] [CrossRef]
%wt | Al_4% | Al_7% | Al_10% | Al_12% |
---|---|---|---|---|
SiO2 | 47.51 | 45.74 | 44.58 | 43.09 |
Al2O3 | 3.74 | 6.52 | 9.67 | 12.49 |
Fe2O3 | 0.58 | 1.14 | 1.02 | 1.07 |
CaO | 46.04 | 44.47 | 42.73 | 40.3 |
MgO | 0.67 | 0.62 | 0.57 | 0.52 |
Other elements | <1.50 | <1.50 | <1.50 | <1.50 |
C/S (molar) | 1.04 | 1.04 | 1.03 | 1.00 |
Nomenclature | Si/Na | Na2O (M) | pH |
---|---|---|---|
MS1.2 | 1.20 | 3.52 | 13.3 |
MS0.9 | 0.90 | 3.52 | 13.3 |
MS0.75 | 0.75 | 4.92 | 13.8 |
AWH Binder Al2O3% | Pseudowollastonite | Wollastonite | Amorphous |
---|---|---|---|
Al4 | 3.2 | 0.15 | 96.65 |
Al7 | 0 | 0.2 | 99.8 |
Al10 | 0 | 0.3 | 99.7 |
Al12 | 0 | 0.2 | 99.8 |
2 Days | 7 Days | 28 Days | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Samples | FL 105–250 °C | FL 250–500 °C | FL 500–950 °C | FL 105–250 °C | FL 250–500 °C | FL 500–950 °C | FL 105–250 °C | FL 250–500 °C | FL 500–950 °C | |
MS 0.75 | Al4 | 2.67 | 1.56 | 0.08 | 2.46 | 2.60 | 0.46 | 2.33 | 3.05 | 0.57 |
Al7 | 2.80 | 1.84 | 0.08 | 2.42 | 2.21 | 0.71 | 2.98 | 2.16 | 0.88 | |
Al9 | 2.51 | 2.03 | 0.11 | 2.08 | 2.66 | 0.56 | 2.47 | 2.35 | 0.68 | |
Al12 | 2.32 | 1.40 | 0.09 | 2.29 | 1.75 | 0.44 | 2.56 | 2.20 | 0.88 | |
MS 0.9 | Al4 | 1.90 | 1.23 | 0.20 | 2.67 | 1.24 | 0.19 | 2.47 | 2.94 | 0.38 |
Al7 | 2.19 | 1.33 | 0.27 | 2.65 | 1.34 | 0.40 | 2.54 | 2.61 | 1.95 | |
Al9 | 2.01 | 1.17 | 0.25 | 2.15 | 1.83 | 0.54 | 2.47 | 2.32 | 1.13 | |
Al12 | 2.14 | 1.26 | 0.39 | 2.18 | 1.63 | 0.40 | 2.38 | 2.31 | 0.74 | |
MS 1.2 | Al4 | 1.88 | 1.02 | 0.22 | 2.45 | 1.18 | 0.24 | 2.32 | 4.09 | 0.49 |
Al7 | 1.97 | 1.07 | 0.31 | 2.38 | 1.57 | 0.88 | 3.06 | 2.33 | 1.40 | |
Al9 | 2.02 | 1.12 | 0.21 | 2.15 | 1.54 | 0.89 | 2.25 | 2.64 | 2.80 | |
Al12 | 1.85 | 1.31 | 0.36 | 2.24 | 1.40 | 0.68 | 2.45 | 2.39 | 2.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antunes, M.; Santos, R.L.; Horta, R.B.; Colaço, R. Influence of Silica Modulus on the Activation of Amorphous Wollastonitic Hydraulic Binders with Different Alumina Content: Study of Hydration Reaction and Paste Performance. Materials 2024, 17, 3200. https://doi.org/10.3390/ma17133200
Antunes M, Santos RL, Horta RB, Colaço R. Influence of Silica Modulus on the Activation of Amorphous Wollastonitic Hydraulic Binders with Different Alumina Content: Study of Hydration Reaction and Paste Performance. Materials. 2024; 17(13):3200. https://doi.org/10.3390/ma17133200
Chicago/Turabian StyleAntunes, Mónica, Rodrigo Lino Santos, Ricardo Bayão Horta, and Rogério Colaço. 2024. "Influence of Silica Modulus on the Activation of Amorphous Wollastonitic Hydraulic Binders with Different Alumina Content: Study of Hydration Reaction and Paste Performance" Materials 17, no. 13: 3200. https://doi.org/10.3390/ma17133200
APA StyleAntunes, M., Santos, R. L., Horta, R. B., & Colaço, R. (2024). Influence of Silica Modulus on the Activation of Amorphous Wollastonitic Hydraulic Binders with Different Alumina Content: Study of Hydration Reaction and Paste Performance. Materials, 17(13), 3200. https://doi.org/10.3390/ma17133200