Enhancing the Thermal Resistance of UV-Curable Resin Using (3-Thiopropyl)polysilsesquioxane
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Analytical Methods and Methodology
2.3. Synthesis of Precursor Octa(3-thiopropyl)silsesquioxane
2.4. General Procedure for Composite Preparation
3. Results and Discussion
3.1. FT-IR-ATR Spectroscopy Analysis
3.2. Thermogravimetric Analysis
3.2.1. Microscopic Analysis
3.2.2. FT-IR Spectroscopy Analysis after Thermal Decomposition
3.3. Photoreological and Kinetic Studies of the New Compositions
3.4. Photo-DSC
3.5. Water Contact Angle
3.6. Mechanical Properties
4. Conclusions
5. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hoyle, C.E. Photocurable coatings. Acs Symp. Ser. 1990, 417, 1–16. [Google Scholar] [CrossRef]
- Schwalm, R. UV Coatings: Basics, Recent Developments and New Applications; Elsevier: Amsterdam, The Netherlands, 2017; pp. 1–18. [Google Scholar]
- Wu, Q.; Hu, Y.; Tang, J.; Zhang, J.; Wang, C.; Shang, Q.; Feng, G.; Liu, C.; Zhou, Y.; Lei, W. High-Performance Soybean-Oil-Based Epoxy Acrylate Resins: “Green” Synthesis and Application in UV-Curable Coatings. ACS Sustain. Chem. Eng. 2018, 6, 8340–8349. [Google Scholar] [CrossRef]
- Zhao, D.; Liu, S.; Wu, Y.; Guan, T.; Sun, N.; Ren, B. Self-healing UV light-curable resins containing disulfide group: Synthesis and application in UV coatings. Prog. Org. Coat. 2019, 133, 289–298. [Google Scholar] [CrossRef]
- Srivastava, A.; Agarwal, D.; Mistry, S.; Singh, J. UV curable polyurethane acrylate coatings for metal surfaces. Pigment Resin Technol. 2008, 37, 217–223. [Google Scholar] [CrossRef]
- Lee, B.-H.; Choi, J.S.; Kim, H.; Kim, J.-I.; Park, J.Y. Properties of UV-Curable coatings for wood floorings as a function of UV dose. J. Ind. Eng. Chem. 2004, 10, 608–613. [Google Scholar]
- Bongiovanni, R.M.; Montefusco, F.; Priola, A.; Macchioni, N.; Lazzeri, S.; Sozzi, L.; Améduri, B. High performance UV-cured coatings for wood protection. Prog. Org. Coat. 2002, 45, 359–363. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, J.G.; Cho, J.D.; Hong, J.W. Optimization and characterization of UV-curable adhesives for optical communications by response surface methodology. Polym. Test. 2003, 22, 899–906. [Google Scholar] [CrossRef]
- Moon, J.H.; Shul, Y.G.; Han, H.; Hong, S.; Choi, Y.E.; Kim, H.T. A study on UV-curable adhesives for optical pick-up: I. Photo-initiator effects. Int. J. Adhes. Adhes. 2005, 25, 301–312. [Google Scholar] [CrossRef]
- Saleh, E.; Woolliams, P.; Clarke, B.; Gregory, A.; Greedy, S.; Smartt, C.; Wildman, R.D.; Ashcroft, I.; Hague, R.; Dickens, P.; et al. 3D inkjet-printed UV-curable inks for multi-functional electromagnetic applications. Addit. Manuf. 2017, 13, 143–148. [Google Scholar] [CrossRef]
- Hancock, A.; Lin, L. Challenges of UV curable ink-jet printing inks—A formulator’s perspective. Pigment Resin Technol. 2004, 33, 280–286. [Google Scholar] [CrossRef]
- Liu, C.; Wang, C.; Hu, Y.; Zhang, F.; Shang, Q.; Lei, W.; Zhou, Y.; Cai, Z. Castor oil-based polyfunctional acrylate monomers: Synthesis and utilization in UV-curable materials. Prog. Org. Coat. 2018, 121, 236–246. [Google Scholar] [CrossRef]
- Hu, Y.; Shang, Q.; Bo, C.; Jia, P.; Feng, G.; Zhang, F.; Liu, C. Synthesis and Properties of UV-Curable Polyfunctional Polyurethane Acrylate Resins from Cardanol. ACS Omega 2019, 4, 12505–12511. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Shang, Q.; Wang, C.; Feng, G.; Liu, C.; Xu, F.; Zhou, Y. Renewable epoxidized cardanol-based acrylate as a reactive diluent for UV-curable resins. Polym. Adv. Technol. 2018, 29, 1852–1860. [Google Scholar] [CrossRef]
- Świderska, J.; Czech, Z.; Świderski, W.; Kowalczyk, A. Reducing of on polymerization shrinkage by application of UV curable dental restorative composites. Pol. J. Chem. Technol. 2014, 16, 51–55. [Google Scholar] [CrossRef]
- Fertier, L.; Koleilat, H.; Stemmelen, M.; Giani, O.; Joly-Duhamel, C.; Lapinte, V.; Robin, J.J. The use of renewable feedstock in UV-curable materials—A new age for polymers and green chemistry. Prog. Polym. Sci. 2013, 38, 932–962. [Google Scholar] [CrossRef]
- Raszewski, Z.; Kulbacka, J.; Pakuła, D.; Brząkalski, D.; Przekop, R.E. FeldSpar-Modified methacrylic composite for fabrication of prosthetic teeth. Materials 2023, 16, 3674. [Google Scholar] [CrossRef] [PubMed]
- Maag, K.; Lenhard, W.; Löffles, H. New UV curing systems for automotive applications. Prog. Org. Coat. 2000, 40, 93–97. [Google Scholar] [CrossRef]
- Kim, S.H.; Lee, D.G.; Lee, J.W.; Oh, D.G.; Son, I.; Lee, J.H.; Kim, H.-J.; Jung, H.W. Relationship between Crosslinking and Surface Mechanical Properties of UV Curable Coatings for Automotive Interior Plastic Parts. Polymer 2020, 44, 38–48. [Google Scholar] [CrossRef]
- Stropp, J.P.; Wolff, U.; Kernaghan, S.; Löffler, H.; Osterhold, M.; Thomas, H. UV curing systems for automotive refinish applications. Prog. Org. Coat. 2006, 55, 201–205. [Google Scholar] [CrossRef]
- Athawale, V.D.; Kulkarni, M.A. Preparation and properties of urethane/acrylate composite by emulsion polymerization technique. Prog. Org. Coat. 2009, 65, 392–400. [Google Scholar] [CrossRef]
- Hadavand, B.S.; Najafi, F.; Saeb, M.R.; Malekian, A. Hyperbranched polyesters urethane acrylate resin. High Perform. Polym. 2017, 29, 651–662. [Google Scholar] [CrossRef]
- Feng, H.; Hu, C.P. Morphology and mechanical properties of urethane acrylate resin networks. J. Appl. Polym. Sci. 2000, 77, 1532–1537. [Google Scholar]
- Chiang, W.; Shu, W. Preparation and properties of UV-curable polydimethylsiloxane urethane acrylate. Angew. Makromol. Chem. 1988, 160, 41–66. [Google Scholar] [CrossRef]
- Tuo, P.; Zhou, Y.; He, Y.; Tang, Y.; Yang, J.; Akram, M.Y.; Nie, J. Preparation and characterization of yellowing resistance and low volume shrinkage of fluorinated polysiloxane urethane acrylate. Prog. Org. Coat. 2016, 97, 74–81. [Google Scholar] [CrossRef]
- Pourreau, D.B.; Smyth, S. New low-viscosity acrylic-urethane prepolymers and their acrylated oligomers for moisture and UV-curable coatings. JCT Res. 2005, 2, S42. [Google Scholar]
- Çakmakçı, E. POSS—Thermosetting polymer nanocomposites. In Polyhedral Oligomeric Silsesquioxane (POSS) Polymer Nanocomposites; Elsevier: Amsterdam, The Netherlands, 2021; pp. 127–175. [Google Scholar] [CrossRef]
- Florea, N.M.; Damian, C.M.; Ionescu, C.; Lungu, A.; Vasile, E.; Iovu, H. Designing of polyhedral oligomeric silsesquioxane (POSS)-based dithiol/dimethacrylate nano-hybrids. Polym. Bull. 2017, 75, 3897–3916. [Google Scholar] [CrossRef]
- Kowalewska, A. Self-Assembling Polyhedral silsesquioxanes—Structure and Properties. Curr. Org. Chem. 2017, 21, 1243–1264. [Google Scholar] [CrossRef]
- Laine, R.M.; Zhang, C.; Sellinger, A.; Viculis, L. Polyfunctional cubic silsesquioxanes as building blocks for organic/inorganic hybrids. Appl. Organomet. Chem. 1998, 12, 715–723. [Google Scholar]
- Zhou, H.; Ye, Q.; Xu, J. Polyhedral oligomeric silsesquioxane-based hybrid materials and their applications. Mater. Chem. Front. 2017, 1, 212–230. [Google Scholar] [CrossRef]
- Li, G.; Wang, L.; Ni, H.; Pittman, C.U., Jr. Polyhedral Oligomeric Silsesquioxane (POSS) Polymers and Copolymers: A review. J. Inorg. Organomet. Polym. 2001, 11, 123–154. [Google Scholar] [CrossRef]
- Gan, Y.; Jiang, X.; Yin, J. Self-Wrinkling patterned surface of photocuring coating induced by the fluorinated POSS containing thiol groups (F-POSS-SH) as the reactive nanoadditive. Macromolecules 2012, 45, 7520–7526. [Google Scholar] [CrossRef]
- Xu, Y.; Long, J.; Zhang, R.; Du, Y.; Guan, S.; Wang, Y.; Huang, L.; Wei, H.; Liu, L.; Huang, Y. Greatly improving thermal stability of silicone resins by modification with POSS. Polym. Degrad. Stab. 2020, 174, 109082. [Google Scholar] [CrossRef]
- Ma, L.; Zhu, Y.; Wang, M.; Yang, X.; Gao, S.; Huang, Y. Enhancing interfacial strength of epoxy resin composites via evolving hyperbranched amino-terminated POSS on carbon fiber surface. Compos. Sci. Technol. 2019, 170, 148–156. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Prządka, D.; Andrzejewska, E. POSS functionalized with mixed fluoroalkyl and methacryloxy substituents as modifiers for UV-curable coatings. J. Coat. Technol. Res. 2018, 16, 167–178. [Google Scholar] [CrossRef]
- Lin, H.-M.; Wu, S.; Chang, F.; Yen, Y. Photo-polymerization of photocurable resins containing polyhedral oligomeric silsesquioxane methacrylate. Mater. Chem. Phys. 2011, 131, 393–399. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Andrzejewska, E.; Prządka, D.; Zgrzeba, A. Światłoutwardzalne uretanoakrylowe materiały hybrydowe zawierające oktametakryloksypropylooktasilsekwioksan. Przemysł Chem. 2012, 91, 1873–1875. [Google Scholar]
- Andrzejewska, E.; Prządka, D.; Dutkiewicz, M. Światłoutwardzalne Lakiery Modyfikowane Poliedrycznymi Oligomerycznymi Silseskwioksanami. In Proceedings of the XXII Konferencja Naukowa Modyfikacja Polimerów, Kudowa-Zdrój, Poland, 21–23 September 2015. [Google Scholar]
- Lungu, A.; Ghițman, J.; Cernencu, A.I.; Serafim, A.; Florea, N.M.; Vasile, E.; Iovu, H. POSS-containing hybrid nanomaterials based on thiol-epoxy click reaction. Polymer 2018, 145, 324–333. [Google Scholar] [CrossRef]
- Fu, J.; Shi, L.; Chen, Y.; Yuan, S.; Wu, J.; Liang, X.; Zhong, Q. Epoxy nanocomposites containing mercaptopropyl polyhedral oligomeric silsesquioxane: Morphology, thermal properties, and toughening mechanism. J. Appl. Polym. Sci. 2008, 109, 340–349. [Google Scholar] [CrossRef]
- Çakmakçı, E. Allylamino diphenylphosphine oxide and poss containing flame retardant photocured hybrid coatings. Prog. Org. Coat. 2017, 105, 37–47. [Google Scholar] [CrossRef]
- EN ISO 527-2:1996; Plastics-Determination of Tensile Properties—Part 2: Test Conditions for Moulding and Extrusion Plastics (ISO 527-2:1993 Including Corr 1:1994). British Standards Institution: London, UK, 1999.
- Dumitriu, A.-C.; Cazacu, M.; Bargan, A.; Bălan, M.; Vornicu, N.; Varganici, C.; Shova, S. Full functionalized silica nanostructure with well-defined size and functionality: Octakis(3-mercaptopropyl)octasilsesquioxane. J. Organomet. Chem. 2015, 799–800, 195–200. [Google Scholar] [CrossRef]
- Feher, F.J.; Wyndham, K.D.; Soulivong, D.; Nguyen, F. Syntheses of highly functionalized cube-octameric polyhedral oligosilsesquioxanes (R8Si8O12). J. Chem. Soc.-Dalton Trans. 1999, 9, 1491–1498. [Google Scholar] [CrossRef]
- Pakuła, D.; Przekop, R.E.; Brząkalski, D.; Frydrych, M.; Sztorch, B.; Marciniec, B. Sulfur-Containing silsesquioxane derivatives obtained by the thiol-ene reaction: Synthesis and thermal degradation. ChemPlusChem 2022, 87, e202200099. [Google Scholar] [CrossRef]
- Pakuła, D.; Przekop, R.E.; Sztorch, B.; Marciniec, B. Sposób Otrzymywania Modyfikowanych Żywic Fotoutwardzalnych Okta(3-tiopropylosilseskwioksanem) o Znacznie Podwyższonej Stabilności Termicznej. Patent Application P.443618, 28 January 2023. [Google Scholar]
- Ashurov, M.S.; Bakhia, T.; Saidzhonov, B.M.; Klimonsky, S.O. Preparation of inverse photonic crystals by ETPTA photopolymerization method and their optical properties. J. Phys. Conf. Ser. 2020, 1461, 012009. [Google Scholar] [CrossRef]
- Bednarczyk, P.; Walkowiak, K.; Irska, I. Epoxy (Meth)acrylate-Based Thermally and UV Initiated Curable Coating Systems. Polymers 2023, 15, 4664. [Google Scholar] [CrossRef]
- Liu, H.; Sun, R.; Feng, S.; Wang, D.; Liu, H. Rapid synthesis of a silsesquioxane-based disulfide-linked polymer for selective removal of cationic dyes from aqueous solutions. Chem. Eng. J. 2018, 359, 436–445. [Google Scholar] [CrossRef]
- Handke, M.; Handke, B.; Kowalewska, A.; Jastrzȩbski, W. New polysilsesquioxane materials of ladder-like structure. J. Mol. Struct. 2009, 924–926, 254–263. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, S.J.; Qiao, X.G.; Li, Y.; Zheng, W.H.; Bai, P. Synthesis and microwave absorbing properties of SiC nanowires. Appl. Phys. A 2018, 124, 802. [Google Scholar] [CrossRef]
- Topa-Skwarczyńska, M.; Świeży, A.; Krok, D.; Starzak, K.; Niezgoda, P.; Oksiuta, B.; Wałczyk, W.; Ortyl, J. Novel formulations containing fluorescent sensors to improve the resolution of 3D prints. Int. J. Mol. Sci. 2022, 23, 10470. [Google Scholar] [CrossRef]
- Topa-Skwarczyńska, M.; Ortyl, J. Photopolymerization shrinkage: Strategies for reduction, measurement methods and future insights. Polym. Chem. 2023, 14, 2145–2158. [Google Scholar] [CrossRef]
- Cramer, N.B.; Couch, C.L.; Schreck, K.M.; Boulden, J.E.; Wydra, R.; Stansbury, J.W.; Bowman, C.N. Properties of methacrylate-thiol-ene formulations as dental restorative materials. Dent. Mater. 2010, 26, 799–806. [Google Scholar] [CrossRef]
- Marcinkowska, A.; Zgrzeba, A.; Lota, G.; Kopczyński, K.; Hoy, E. Ionogels by thiol-enephotopolymerization in ionic liquids: Formation, morphology and properties. Polymer 2019, 160, 272–281. [Google Scholar] [CrossRef]
- Andrzejewska, E. Photoinitiated polymerization in ionic liquids and its application. Polym. Int. 2017, 66, 366–381. [Google Scholar] [CrossRef]
- Hoyle, C.E.; Bowman, C.N. Thiol-Ene Click Chemistry. Angew. Chem. Int. Ed. Eng. 2010, 49, 1540–1573. [Google Scholar] [CrossRef] [PubMed]
Modifier Content [%] | SSQ-SH [g] | Resin [g] | Initiator DMPA [g] |
---|---|---|---|
0 | 0 | 6.00 | 0.06 |
0.5 | 0.03 | 5.97 | 0.06 |
1.0 | 0.06 | 5.94 | 0.06 |
1.5 | 0.09 | 5.91 | 0.06 |
2.0 | 0.12 | 5.88 | 0.06 |
5.0 | 0.30 | 5.70 | 0.06 |
10.0 | 0.60 | 5.40 | 0.06 |
15.0 | 0.90 | 5.10 | 0.06 |
20.0 | 1.20 | 4.80 | 0.06 |
25.0 | 1.50 | 4.50 | 0.06 |
50.0 | 3.00 | 3.00 | 0.06 |
Modifier Content [%] | Temperature at 1% Mass Change [°C] | Temperature at 5% Mass Change [°C] | Onset Temperature [°C] | Temperature at the Maximum Rate of Mass Loss [°C] | Residual Mass at 600 °C [%] | ||||
---|---|---|---|---|---|---|---|---|---|
N2 | ΔT | N2 | ΔT | N2 | ΔT | N2 | ΔT | N2 | |
0 | 157.8 | - | 290.4 | - | 306.0 | - | 345.3 | - | 0 |
0.5 | 194.0 | 36.2 | 300.2 | 9.8 | 316.1 | 10.1 | 347.9 | 2.6 | 1.8 |
1 | 167.5 | 9.7 | 300.6 | 10.2 | 317.1 | 11.1 | 349.6 | 4.3 | 5.2 |
1.5 | 159.8 | 2.0 | 301.3 | 10.9 | 318.7 | 12.7 | 349.2 | 3.9 | 6.6 |
2 | 161.7 | 3.9 | 300.0 | 9.6 | 318.8 | 12.8 | 352.1 | 6.8 | 7.9 |
5 | 220.7 | 62.9 | 307.7 | 17.3 | 319.0 | 13.0 | 350.9 | 5.6 | 9.5 |
10 | 226.4 | 68.6 | 308.6 | 18.2 | 323.2 | 17.2 | 353.5 | 8.2 | 10.2 |
15 | 162.3 | 4.5 | 304.6 | 14.2 | 318.0 | 12.0 | 352.1 | 6.8 | 19.3 |
20 | 172.6 | 14.8 | 302.4 | 12.0 | 319.5 | 13.5 | 354.9 | 9.6 | 22.6 |
25 | 175.3 | 17.5 | 301.2 | 10.8 | 320.1 | 14.1 | 358.7 | 13.4 | 23.0 |
50 | 233.0 | 75.2 | 310.8 | 20.4 | 318.7 | 12.7 | 367.8 | 22.5 | 30.3 |
Modifier Content [%] | Gel Point [s] | Shrinkage [%] | Heat Flow Max. [W/g] |
---|---|---|---|
0 | 15.0 | 0.4 | 30.895 |
0.5 | 13.5 | 0.3 | 21.175 |
1 | 13.0 | 0.4 | 25.454 |
1.5 | 12.0 | 0.4 | 25.675 |
5 | 12.5 | 0.4 | 32.057 |
10 | 12.5 | 0.3 | 28.050 |
15 | 13.0 | 0.4 | 25.602 |
20 | 12.5 | 0.3 | 31.987 |
25 | 12.5 | 0.3 | 30.502 |
50 | 12.5 | 0.2 | 18.499 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pakuła, D.; Sztorch, B.; Topa-Skwarczyńska, M.; Gałuszka, K.; Ortyl, J.; Marciniec, B.; Przekop, R.E. Enhancing the Thermal Resistance of UV-Curable Resin Using (3-Thiopropyl)polysilsesquioxane. Materials 2024, 17, 2219. https://doi.org/10.3390/ma17102219
Pakuła D, Sztorch B, Topa-Skwarczyńska M, Gałuszka K, Ortyl J, Marciniec B, Przekop RE. Enhancing the Thermal Resistance of UV-Curable Resin Using (3-Thiopropyl)polysilsesquioxane. Materials. 2024; 17(10):2219. https://doi.org/10.3390/ma17102219
Chicago/Turabian StylePakuła, Daria, Bogna Sztorch, Monika Topa-Skwarczyńska, Karolina Gałuszka, Joanna Ortyl, Bogdan Marciniec, and Robert E. Przekop. 2024. "Enhancing the Thermal Resistance of UV-Curable Resin Using (3-Thiopropyl)polysilsesquioxane" Materials 17, no. 10: 2219. https://doi.org/10.3390/ma17102219
APA StylePakuła, D., Sztorch, B., Topa-Skwarczyńska, M., Gałuszka, K., Ortyl, J., Marciniec, B., & Przekop, R. E. (2024). Enhancing the Thermal Resistance of UV-Curable Resin Using (3-Thiopropyl)polysilsesquioxane. Materials, 17(10), 2219. https://doi.org/10.3390/ma17102219