Influence of Talc on the Properties of Silicone Pressure-Sensitive Adhesives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
- Silicone resin DOWSIL™ 7358 (Q2-7358) from Dow Corning (Midland, MI, USA).
- NOVIPER DB 50—Bis(2,4-dichlorobenzoyl) peroxide (DClBPO) from Novichem (Chorzów, Poland)—cross-linking agent.
- Toluene from Carl Roth (Karlsruhe, Germany)—solvent.
- Talc from Elementis UK Ltd. (Cologne, Germany)—filler.
2.2. Pot Life
2.3. Preparation of One-Sided Self-Adhesive Tape
2.3.1. Laboratory Scale
2.3.2. Industrial Scale
2.4. Peel Adhesion
2.5. Cohesion
2.6. Tack
2.7. Thermal Resistance
2.8. Shrinkage
2.9. Differential Scanning Calorimetry
2.10. Thermogravimetric Analysis
2.11. Heat of Combustion
2.12. Smoke Generation Test
3. Results and Discussion
3.1. Pot Life Determination
3.2. Application Performance of Pressure-Sensitive Adhesives
3.3. DSC Analysis
3.4. Thermogravimetric Analysis (TGA)
3.5. Heat of Combustion
3.6. Smoke Generation Test
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lin, S.B.; Durfee, L.D.; Ekeland, R.A.; McVie, J.; Schalau, G.K. Recent advances in silicone pressure-sensitive adhesives. J. Adhes. Sci. Technol. 2007, 21, 605–623. [Google Scholar] [CrossRef]
- Benedek, I.; Feldstein, M.M. Technology of Pressure-Sensitive Adhesives and Products; CRC Press: Boca Raton, FL, USA, 2008; ISBN 9781420059397. [Google Scholar]
- Mecham, S.; Sentman, A.; Sambasivam, M. Amphiphilic silicone copolymers for pressure sensitive adhesive applications. J. Appl. Polym. Sci. 2010, 116, 3265–3270. [Google Scholar] [CrossRef]
- Fitzgerald, D.M.; Colson, Y.L.; Grinstaff, M.W. Synthetic pressure sensitive adhesives for biomedical applications. Prog. Polym. Sci. 2023, 142, 101692. [Google Scholar] [CrossRef]
- Lee, B.K.; Ryu, J.H.; Baek, I.; Kim, Y.; Jang, W.I.; Kim, S.; Yoon, Y.S.; Kim, S.H.; Hong, S.; Byun, S.; et al. Silicone-Based Adhesives with Highly Tunable Adhesion Force for Skin-Contact Applications. Adv. Healthc. Mater. 2017, 6, 1700621. [Google Scholar] [CrossRef]
- II, G.K.S.; Bobenrieth, A.; Huber, R.O.; Nartker, L.S.; Thomas, X. Silicone Adhesives in Medical Applications. In Applied Adhesive Bonding in Science and Technology; InTech: Rijeka, Croatia, 2018. [Google Scholar]
- He, M.; Zhang, Q.Y.; Guo, J.Y. Synthesis and Characterization of Silicone Based Pressure Sensitive Adhesive. Adv. Mater. Res. 2011, 306–307, 1773–1778. [Google Scholar] [CrossRef]
- Zhang, J.; Luo, R.; Jiang, M.; Xiang, Q.; Li, J. The preparation and performance of a novel room-temperature-cured heat-resistant adhesive for ceramic bonding. Mater. Sci. Eng. A 2011, 528, 2952–2959. [Google Scholar] [CrossRef]
- Rothon, R. Talcs. In Fillers for Polymer Applications; Polymers and Polymeric Composites: A Reference Series; Springer: Berlin/Heidelberg, Germany, 2017; pp. 195–202. [Google Scholar]
- The use of special talcs as supplementary flame retardants. Addit. Polym. 1998, 1998, 9–10. [CrossRef]
- Morgan, A.B.; Gilman, J.W. An overview of flame retardancy of polymeric materials: Application, technology, and future directions. Fire Mater. 2013, 37, 259–279. [Google Scholar] [CrossRef]
- Yan, L.; Tang, X.; Xu, Z.; Xie, X. Fabrication of talc reinforced transparent fire-retardant coating towards excellent fire protection, antibacterial, mechanical and anti-ageing properties. Polym. Degrad. Stab. 2022, 203, 110074. [Google Scholar] [CrossRef]
- Ewell, R.H.; Bunting, E.N.; Geller, R.F. Thermal decomposition of talc. J. Res. Natl. Bur. Stand. 1935, 15, 551. [Google Scholar] [CrossRef]
- Liu, X.; Liu, X.; Hu, Y. Investigation of the thermal decomposition of talc. Clays Clay Miner. 2014, 62, 137–144. [Google Scholar] [CrossRef]
- Ulian, G.; Valdrè, G. Density functional investigation of the thermophysical and thermochemical properties of talc [Mg3Si4O10(OH)2]. Phys. Chem. Miner. 2015, 42, 151–162. [Google Scholar] [CrossRef]
- Sanghvi, M.R.; Tambare, O.H.; More, A.P. Performance of various fillers in adhesives applications: A review. Polym. Bull. 2022, 79, 10491–10553. [Google Scholar] [CrossRef]
- FINAT. Technical Handbook Test Methods, 10th ed.; Fédération Internationale des Fabricants et Transformateurs d’Adhesifs et Thermocollants sur Papiers et Autres Support: The Hague, The Netherlands, 2019. [Google Scholar]
- EN ISO 11358-1:2022; Plastics—Thermogravimetry (TG) of Polymers—Part 1: General Principles. European Committee for Standardization: Brussels, Belgium, 2022.
- ISO 1716:2018; Reaction to Fire Tests for Products—Determination of the Gross Heat of Combustion (Calorific Value). European Committee for Standardization: Brussels, Belgium, 2018.
- ISO 5659-2:2017; Plastics—Smoke Generation—Part 2: Determination of Optical Density by a Single-Chamber Test. European Committee for Standardization: Brussels, Belgium, 2017.
- Szadkowski, B.; Marzec, A.; Rybiński, P.; Żukowski, W.; Zaborski, M. Characterization of Ethylene–propylene Composites Filled with Perlite and Vermiculite Minerals: Mechanical, Barrier, and Flammability Properties. Materials 2020, 13, 585. [Google Scholar] [CrossRef] [PubMed]
- Antosik, A.K.; Makuch, E.; Gziut, K. Influence of modified attapulgite on silicone pressure-sensitive adhesives properties. J. Polym. Res. 2022, 29, 135. [Google Scholar] [CrossRef]
- Pramanik, S.; Karak, N. Polymer Nanocomposites for Adhesive, Coating, and Paint Applications. In Properties and Applications of Polymer Nanocomposites; Springer: Berlin/Heidelberg, Germany, 2017; pp. 173–204. [Google Scholar]
- Antosik, A.K.; Mozelewska, K. Influence of Nanoclay on the Thermo-Mechanical Properties of Silicone Pressure-Sensitive Adhesives. Materials 2022, 15, 7460. [Google Scholar] [CrossRef] [PubMed]
- Weisbrodt, M.; Kowalczyk, A. Self-Crosslinkable Pressure-Sensitive Adhesives from Silicone-(Meth)acrylate Telomer Syrups. Materials 2022, 15, 8924. [Google Scholar] [CrossRef] [PubMed]
- Leong, Y.W.; Abu Bakar, M.B.; Ishak, Z.A.M.; Ariffin, A.; Pukanszky, B. Comparison of the mechanical properties and interfacial interactions between talc, kaolin, and calcium carbonate filled polypropylene composites. J. Appl. Polym. Sci. 2004, 91, 3315–3326. [Google Scholar] [CrossRef]
- Zhang, X.; He, J.; Yue, L.; Bai, Y.; Liu, H. Heat resistance of acrylic pressure-sensitive adhesives based on commercial curing agents and UV/heat curing systems. J. Appl. Polym. Sci. 2019, 136, 47310. [Google Scholar] [CrossRef]
- Joo, H.-S.; Do, H.-S.; Park, Y.-J.; Kim, H.-J. Adhesion performance of UV-cured semi-IPN structure acrylic pressure sensitive adhesives. J. Adhes. Sci. Technol. 2006, 20, 1573–1594. [Google Scholar] [CrossRef]
- Yadav, R.; Singh, M.; Shekhawat, D.; Lee, S.-Y.; Park, S.-J. The role of fillers to enhance the mechanical, thermal, and wear characteristics of polymer composite materials: A review. Compos. Part A Appl. Sci. Manuf. 2023, 175, 107775. [Google Scholar] [CrossRef]
- Hamdani, S.; Longuet, C.; Perrin, D.; Lopez-cuesta, J.-M.; Ganachaud, F. Flame retardancy of silicone-based materials. Polym. Degrad. Stab. 2009, 94, 465–495. [Google Scholar] [CrossRef]
- Singh, B.; Sharma, N. Mechanistic implications of plastic degradation. Polym. Degrad. Stab. 2008, 93, 561–584. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Z.; Yang, T. Silica coated expanded polystyrene/cement composites with improved fire resistance, smoke suppression and mechanical strength. Mater. Chem. Phys. 2020, 240, 122190. [Google Scholar] [CrossRef]
Filler | Filler Content (pph) | Symbols |
---|---|---|
Talc | 0.0 | T 0.0 |
0.1 | T 0.1 | |
0.5 | T 0.5 | |
1.0 | T 1.0 | |
3.0 | T 3.0 |
Sample | Viscosity (Pa·s) | |||||
---|---|---|---|---|---|---|
1 Day | 2 Days | 3 Days | 5 Days | 7 Days | 10 Days | |
T 0.0 | 14.2 | 15.8 | 17.2 | 22.3 | 24.3 | 24.7 |
T 0.1 | 17.4 | 18.4 | 20.6 | 25.3 | 33.0 | Gel |
T 0.5 | 15.9 | 16.7 | 19.0 | 24.9 | 32.4 | Gel |
T 1.0 | 17.0 | 17.9 | 19.2 | 25.2 | 32.8 | Gel |
T 3.0 | 17.6 | 18.7 | 20.8 | 27.1 | 33.3 | Gel |
Sample | Cohesion (h) | SAFT (°C) | |
---|---|---|---|
23 °C | 70 °C | ||
T 0.0 | >72 | >72 | 150 |
T 0.1 | >72 | >72 | >225 |
T 0.5 | >72 | >72 | >225 |
T 1.0 | >72 | >72 | >225 |
T 3.0 | >72 | >72 | >225 |
Sample | Shrinkage (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
10 min | 30 min | 1 h | 3 h | 8 h | 24 h | 2 Days | 3 Days | 4 Days | 5 Days | 6 Days | 7 Days | |
T 0.0 | 0.412 | 0.421 | 0.641 | 0.900 | 1.020 | 1.140 | 1.325 | 1.325 | 1.325 | 1.325 | 1.325 | 1.325 |
T 0.1 | 0.047 | 0.064 | 0.069 | 0.075 | 0.139 | 0.181 | 0.185 | 0.207 | 0.217 | 0.323 | 0.451 | 0.507 |
T 0.5 | 0.080 | 0.184 | 0.189 | 0.195 | 0.259 | 0.301 | 0.305 | 0.327 | 0.337 | 0.373 | 0.531 | 0.557 |
T 1.0 | 0.119 | 0.182 | 0.250 | 0.286 | 0.342 | 0.407 | 0.409 | 0.427 | 0.438 | 0.468 | 0.568 | 0.596 |
T 3.0 | 0.169 | 0.332 | 0.440 | 0.496 | 0.542 | 0.607 | 0.609 | 0.627 | 0.648 | 0.683 | 0.743 | 0.743 |
Sample | Tmax (°C) of Exothermal Peak | ΔH (J/g) |
---|---|---|
T 0.0 | 111 | 4.1 |
T 0.1 | 113 | 3.8 |
T 0.5 | 110 | 3.9 |
T 1.0 | 108 | 4.2 |
T 3.0 | 112 | 4.2 |
Acronym | Sample Mass Before Test (g) | Mass of the Wire (g) | Mass of Residue after Burning (g) |
---|---|---|---|
T 0.0 | 1.0000 | 0.0061 | 0.8154 |
T 0.1 | 1.0001 | 0.0060 | 0.8428 |
T 0.5 | 1.0000 | 0.0059 | 0.8376 |
T 1.0 | 1.0000 | 0.0060 | 0.8196 |
T 3.0 | 1.0001 | 0.0060 | 0.8278 |
Adhesives Sample | T 0.0 | T 0.1 | T 0.5 | T 1.0 | T 3.0 | |||||
---|---|---|---|---|---|---|---|---|---|---|
Pilot Flame | Without | With | Without | With | Without | With | Without | With | Without | With |
Initial weight, mp (g) | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
End weight, mk (g) | 0.1 | 0.1 | 0.3 | 0.1 | 0.5 | 0.1 | 0.9 | 0.1 | 0.7 | 0.5 |
Dsmax (–) | 98.01 | 89.78 | 78.10 | 89.43 | 64.28 | 72.91 | 64.05 | 69.07 | 20.98 | 49.91 |
Time to Dsmax (s) | 1065 | 60 | 1200 | 60 | 1200 | 50 | 1200 | 55 | 1200 | 1080 |
Ds_4 (–) | 53.36 | 70.06 | 18.43 | 67.19 | 17.45 | 59.95 | 12.40 | 57.65 | 2.92 | 13.56 |
VOF_4 (–) | 90.41 | 263.9 | 26.38 | 256.25 | 23.36 | 229.86 | 17.48 | 224.10 | 5.08 | 20.66 |
Burn time (s) | - | 50 | - | 60 | - | 49 | - | 44t | - | - |
Sample | Adhesion (N/25mm) | Tack (N) | Cohesion (h) | SAFT (°C) | |
---|---|---|---|---|---|
23 °C | 70 °C | ||||
T 0.1 | 12.8 | 9.9 | >72 | >72 | >225 |
T 0.1 Ind. | 12,4 | 9.6 | >72 | >72 | >225 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antosik, A.K.; Grajczyk, A.; Półka, M.; Zdanowicz, M.; Halpin, J.; Bartkowiak, M. Influence of Talc on the Properties of Silicone Pressure-Sensitive Adhesives. Materials 2024, 17, 708. https://doi.org/10.3390/ma17030708
Antosik AK, Grajczyk A, Półka M, Zdanowicz M, Halpin J, Bartkowiak M. Influence of Talc on the Properties of Silicone Pressure-Sensitive Adhesives. Materials. 2024; 17(3):708. https://doi.org/10.3390/ma17030708
Chicago/Turabian StyleAntosik, Adrian Krzysztof, Artur Grajczyk, Marzena Półka, Magdalena Zdanowicz, John Halpin, and Marcin Bartkowiak. 2024. "Influence of Talc on the Properties of Silicone Pressure-Sensitive Adhesives" Materials 17, no. 3: 708. https://doi.org/10.3390/ma17030708
APA StyleAntosik, A. K., Grajczyk, A., Półka, M., Zdanowicz, M., Halpin, J., & Bartkowiak, M. (2024). Influence of Talc on the Properties of Silicone Pressure-Sensitive Adhesives. Materials, 17(3), 708. https://doi.org/10.3390/ma17030708