Process Parameter Optimization for CO2 Laser Polishing of Fused Silica Using the Taguchi Method
Abstract
:1. Introduction
2. Experimental Design
3. Results and Discussion
3.1. Signal-to-Noise Ratio Analysis
3.2. Analysis of Variance (ANOVA)
4. Conclusions
- The influence of interaction is considered in CO2 laser polishing of fused silica. Although factor B has a certain influence, the interaction of two factors determines the selection of the optimal level in combination.
- The temperature of the polishing area and the flow time of the molten pool are important factors affecting the surface roughness after polishing, and on the basis of studying the influence of various factors and their interaction on the roughness of the polished surface, the law of the influence of each factor on the interaction time between laser radiation and glass and the flow time of the molten pool is revealed.
- The interaction is considered in the variance analysis, and the optimal process combination A1B1C1D1 is optimized on the basis of range analysis through binary tables and graphs; the roughness of the fused silica grinding surface is reduced from Ra = 0.157 μm to 0.005 μm. The effective reduction rate of roughness value is as high as 96.8%.
- In the laser polishing process, including laser reciprocating scanning and the sample moving slowly on the platform, the interaction of two-factor AB, BC, and BD has a highly significant impact, which is recorded as “***”. Among them, the interaction of AB is the largest, with a contribution of 42.69%; the impact of the other two- factor interactions can be ignored. Factor B has a certain influence, which is recorded as “*”, with a contribution of 27.64%, and its factors can be ignored. The effect of multivariate interaction is negligible.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hecht, K.; Bliedtner, J.; Rost, M.; Müller, H. Thomas Schmidt, Carbon-dioxide laser beam polishing of fused silica surfaces-process development and optimization. Adv. Eng. Mater. 2015, 17, 240–246. [Google Scholar] [CrossRef]
- Zhao, L.J.; Cheng, J.; Chen, M.J.; Yuan, X.D.; Liao, W.; Liu, Q.; Yang, H.; Wang, H.J. Formation mechanism of a smooth, defect-free surface of fused silica optics using rapid CO2 laser polishing. Int. J. Extrem. Manuf. 2019, 1, 035501–1-11. [Google Scholar] [CrossRef]
- Chen, J.; Xu, X.K.; Wei, C.Y.; Gu, J.X.; Dun, A.H.; Shao, J.D. The real-time monitoring surface figure of optical elements in continuous polishing. Proc. SPIE 2019, 9281, 139–145. [Google Scholar] [CrossRef]
- Miller, P.E.; Bude, J.D.; Suratwala, T.I.; Shen, N.; Laurence, T.A.; Steele, W.A.; Menapace, J.; Feit, M.D.; Wong, L.L. Fracture-induced subbandgap absorption as a precursor to optical damage on fused silica surfaces. Opt. Lett. 2010, 35, 2702–2704. [Google Scholar] [CrossRef] [PubMed]
- Laurence, T.A.; Bude, J.D.; Shen, N.; Feldman, T.; Miller, P.E.; Steele, W.A.; Suratwala, T. Metallic-like photoluminescence and absorption in fused silica surface flaws. Appl. Phys. Lett. 2009, 94, 15114. [Google Scholar] [CrossRef]
- Weingarten, C.; Schmickler, A.; Willenborg, E.; Wissenbach, K.; Poprawe, R. Laser polishing and laser shape correction of optical glass. J. Laser Appl. 2017, 29, 011702. [Google Scholar] [CrossRef]
- Kim, C.; Sohn, I.; Lee, Y.J.; Byeon, C.C.; Kim, S.Y.; Park, H.; Lee, H. Fabrication of a fused silica based mold for the microlenticular lens array using a femtosecond laser and a CO2 laser. Opt. Mater. Express 2014, 4, 2233–2240. [Google Scholar] [CrossRef]
- Temple, P.A.; Lowdermilk, W.H.; Milam, D. Carbon dioxide laser polishing of fused silica surface for increased laser-damage resistance at 1064 nm. Appl. Opt. 1982, 21, 3249–3255. [Google Scholar] [CrossRef] [PubMed]
- Vega, F.; Lupón, N.; Cebrian, J.A.; Laguarta, F. Laser application for optical glass polishing. Opt. Eng. 1998, 37, 272–279. [Google Scholar] [CrossRef]
- Markillie, G.A.J.; Baker, H.J.; Villarreal, F.J.; Hall, D.R. Effect of vaporization and melt ejection on laser machining of silica glass micro-optical components. Appl. Opt. 2002, 41, 5660–5667. [Google Scholar] [CrossRef]
- Nowak, K.M.; Baker, H.J.; Hall, D.R. Pulsed-laser machining and polishing of silica micro-optical components using a CO2 laser and an acousto-optic modulator. Proc. SPIE Int. Soc. Opt. Eng. 2003, 4941, 106–111. [Google Scholar]
- Nowak, K.M.; Baker, H.J.; Hall, D.R. Efficient laser polishing of silica micro-optic components. Appl. Opt. 2006, 45, 162–171. [Google Scholar] [CrossRef] [PubMed]
- Heidrich, S.; Richmann, A.; Schmitz, P.; Willenborg, E.; Wissenach, K.; Loosen, P.; Poprawe, R. Optics manufacturing by laser radiation. Opt. Lasers Eng. 2014, 59, 34–40. [Google Scholar] [CrossRef]
- Richmann, A.; Willenborg, E.; Wissenbach, K. Laser Polishing of Fused Silica. In Proceedings of the International Optical Design Conference and Optical Fabrication and Testing, Jackson, WY, USA, 13–17 June 2010. [Google Scholar]
- Hildebrand, J.; Hecht, K.; Bliedtner, J.; Müller, H. Laser beam polishing of quartz glass surfaces. Phys. Procedia 2011, 12, 452–461. [Google Scholar] [CrossRef]
- Varpe, N.J.; Gurnani, U.; Hamilton, A. Optimization of Burnishing process by Taguchi method for surface enhancement of EN31 steel. Surf. Topogr. Metrol. Prop. 2022, 10, 015017. [Google Scholar] [CrossRef]
- Castillo, M.; Monroy, R.; Ahmad, R. Design of experiments to compare the mechanical properties of polylactic acid using material extrusion three-dimensional-printing thermal parameters based on a cyber-physical production system. Sensors 2023, 23, 9833. [Google Scholar] [CrossRef]
- Hassan, A.; Mushtaq, R.T.; Khan, A.M.; Anwar, S. Parametric investigation of the effects of electrical discharge machining on plain D2 steel. Metals 2023, 13, 1964. [Google Scholar] [CrossRef]
Factors | Unit | Levels | |
---|---|---|---|
1 | 2 | ||
A: Length of laser reciprocation | mm | 6 | 7 |
B: Laser beam scanning speed | mm/s | 4500 | 1500 |
C: Feed speed | mm/s | 1.5 | 2 |
D: Defocusing amount | mm | 1 | 5 |
Exp. No. | Column Number | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
A | B | AB | C | AC | BC | ABC | D | AD | BD | ABD | CD | ACD | BCD | ABCD | |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
3 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
4 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 |
5 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 |
6 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 |
7 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 1 | 1 |
8 | 1 | 2 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 1 | 1 | 2 | 2 |
9 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 |
10 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 |
11 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 |
12 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 |
13 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 2 | 1 |
14 | 2 | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 |
15 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 | 2 | 1 | 1 | 2 |
16 | 2 | 2 | 1 | 2 | 1 | 1 | 2 | 2 | 1 | 1 | 2 | 1 | 2 | 2 | 1 |
Exp. No. | A | B | C | D | Raw Data of Roughness/μm | S/N Ratio for Roughness | ||
---|---|---|---|---|---|---|---|---|
S1 | S2 | S3 | ||||||
1 | 1 | 1 | 1 | 1 | 0.005 | 0.006 | 0.007 | 44.357 |
2 | 1 | 1 | 1 | 2 | 0.012 | 0.017 | 0.019 | 35.773 |
3 | 1 | 1 | 2 | 1 | 0.015 | 0.020 | 0.023 | 34.149 |
4 | 1 | 1 | 2 | 2 | 0.044 | 0.038 | 0.046 | 27.371 |
5 | 1 | 2 | 1 | 1 | 0.956 | 1.314 | 1.472 | −2.048 |
6 | 1 | 2 | 1 | 2 | 0.577 | 0.865 | 1.068 | 1.304 |
7 | 1 | 2 | 2 | 1 | 0.397 | 0.758 | 0.889 | 2.946 |
8 | 1 | 2 | 2 | 2 | 0.161 | 0.094 | 0.044 | 19.125 |
9 | 2 | 1 | 1 | 1 | 0.027 | 0.048 | 0.057 | 26.790 |
10 | 2 | 1 | 1 | 2 | 0.069 | 0.079 | 0.082 | 22.285 |
11 | 2 | 1 | 2 | 1 | 0.063 | 0.079 | 0.099 | 21.759 |
12 | 2 | 1 | 2 | 2 | 0.109 | 0.110 | 0.138 | 18.434 |
13 | 2 | 2 | 1 | 1 | 0.130 | 0.198 | 0.335 | 12.510 |
14 | 2 | 2 | 1 | 2 | 0.088 | 0.022 | 0.023 | 25.348 |
15 | 2 | 2 | 2 | 1 | 0.044 | 0.026 | 0.026 | 29.602 |
16 | 2 | 2 | 2 | 2 | 0.016 | 0.021 | 0.017 | 34.832 |
A | B | AB | C | AC | BC | ABC | D | AD | BD | ABD | CD | ACD | BCD | ABCD | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
K1 | 162.977 | 230.92 | 243.944 | 166.32 | 184.016 | 215.712 | 180.256 | 170.064 | 180.304 | 207.664 | 181.768 | 181.368 | 187.8 | 176.152 | 167.36 |
K2 | 191.56 | 123.616 | 110.592 | 188.216 | 170.528 | 138.824 | 174.288 | 184.472 | 174.232 | 146.872 | 172.768 | 173.168 | 166.736 | 178.384 | 187.176 |
k1 | 20.372 | 28.865 | 30.493 | 20.790 | 23.002 | 26.964 | 22.532 | 21.258 | 22.538 | 25.958 | 22.721 | 22.671 | 23.475 | 22.019 | 20.920 |
k2 | 23.945 | 15.452 | 13.824 | 23.527 | 21.316 | 17.353 | 21.786 | 23.059 | 21.779 | 18.359 | 21.596 | 21.646 | 20.842 | 22.298 | 23.397 |
R | 3.573 | 13.413 | 16.669 | 2.737 | 1.686 | 9.611 | 0.746 | 1.801 | 0.759 | 7.599 | 1.125 | 1.025 | 2.633 | 0.279 | 2.477 |
Interaction between Factor A and Factor B | ||||
---|---|---|---|---|
A1 | A2 | ∑ | Average | |
B1 | 35.413 | 22.317 | 57.73 | 28.865 |
B2 | 5.332 | 25.573 | 30.905 | 15.453 |
∑ | 40.745 | 47.89 | 93.159 | |
Average | 20.373 | 23.945 | 22.159 | |
Interaction between factor B and factor C | ||||
C1 | C2 | ∑ | Average | |
B1 | 32.301 | 25.428 | 57.729 | 28.865 |
B2 | 9.279 | 21.626 | 30.905 | 15.453 |
∑ | 41.58 | 47.054 | 88.634 | |
Average | 20.79 | 23.527 | 22.159 | |
Interaction between factor B and factor D | ||||
D1 | D2 | ∑ | Average | |
B1 | 31.764 | 25.966 | 57.73 | 28.865 |
B2 | 10.753 | 20.152 | 30.905 | 15.453 |
∑ | 42.517 | 46.118 | 88.635 | |
Average | 21.259 | 23.059 | 22.159 |
Measurement Area (μm2) | Initial (μm) | Resolution (μm) | Magnification |
---|---|---|---|
143 × 107 | 0.157 | 0.005 | 100× |
274 × 206 | 0.191 | 0.01 | 50× |
696 × 522 | 0.736 | 0.041 | 20× |
1392 × 1044 | 1.692 | 0.135 | 10× |
Source | Sum of Variance | df | Mean Value | F | Contribution |
---|---|---|---|---|---|
A | 51.021 | 1 | 51.021 | 4.218 * | 1.96% |
B | 719.59 | 1 | 719.59 | 59.495 *** | 27.64% |
C | 29.92 | 1 | 29.92 | 1.15% | |
D | 12.93 | 1 | 12.93 | 0.5% | |
A × B | 1111.378 | 1 | 1111.378 | 91.887 *** | 42.69% |
A × C | 11.681 | 1 | 11.681 | 0.45% | |
B × C | 369.441 | 1 | 369.441 | 30.545 *** | 14.19% |
A × D | 2.26 | 1 | 2.26 | 0.09% | |
B × D | 230.935 | 1 | 230.935 | 19.093 *** | 8.87% |
C × D | 4.158 | 1 | 4.158 | 0.16% | |
A × B × C | 2.536 | 1 | 2.536 | 0.1% | |
A × B × D | 5.018 | 1 | 5.018 | 0.19% | |
A × C × D | 27.686 | 1 | 27.686 | 1.06% | |
B × C × D | 0.267 | 1 | 0.267 | 0.01% | |
A × B × C × D | 24.498 | 1 | 24.498 | 0.94% | |
Error | 120.954 | 10 | 12.095 | ||
Total | 2603.319 | 15 | |||
Critical value Fα: F0.01(1, 10) = 10.04, F0.05(1, 10) = 4.96, F0.1(1, 10) = 3.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, G.; Li, X.; Wang, D.; Wang, K. Process Parameter Optimization for CO2 Laser Polishing of Fused Silica Using the Taguchi Method. Materials 2024, 17, 709. https://doi.org/10.3390/ma17030709
Lu G, Li X, Wang D, Wang K. Process Parameter Optimization for CO2 Laser Polishing of Fused Silica Using the Taguchi Method. Materials. 2024; 17(3):709. https://doi.org/10.3390/ma17030709
Chicago/Turabian StyleLu, Guanghua, Xiaopeng Li, Dasen Wang, and Kehong Wang. 2024. "Process Parameter Optimization for CO2 Laser Polishing of Fused Silica Using the Taguchi Method" Materials 17, no. 3: 709. https://doi.org/10.3390/ma17030709
APA StyleLu, G., Li, X., Wang, D., & Wang, K. (2024). Process Parameter Optimization for CO2 Laser Polishing of Fused Silica Using the Taguchi Method. Materials, 17(3), 709. https://doi.org/10.3390/ma17030709