Feasibility and Application of Local Closed-Loop Materials to Produce Compressed and Stabilized Earth Blocks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aggregates and Stabilizers
- Stiff clay soil (SCS);
- Spill way dirt (SWD).
- Mississippi River sand (MRS).
- Recycled glass (R-G) sand, from a mix of colored bottles and jars.
- Construction demolition waste (CDW), originating from demolished structures, construction waste, and other sources of crushed concrete.
- Pea gravel (PG), small stones of rounded and smooth edges as a result of natural weathering.
- Limestone (LS) # 8 is a sedimentary material with angular edges.
- High calcium hydrated lime (Lime), tradename Lhoist, has a composition of >90% calcium hydroxide (CAS# 1305-62-0), <3% magnesium oxide (CAS# 1309-48-4), and <2% crystalline silica (CAS# 14808-60-7) with an apparent density of 400–700 kg/m3. Figure 1 shows the aggregates and the stabilizer used.
2.2. Characterization of Aggregates
2.3. Matrix Design
2.4. Experimental Campaign
Mixing
2.5. Compressed Earth Block Making Machine
2.5.1. Curing
2.5.2. Weight and Dimensions
2.5.3. Compression Resistance Test
2.5.4. Absorption Coefficient
3. Results
3.1. CSEB Linear Dimensions
3.2. CSEB Weight
3.3. CSEB Volume
3.4. CSEB Density
3.5. CSEB Compression Resistance Test
3.6. Initial Absorption Coefficient (Capillarity) for the CSEBs under Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- United Nations. Available online: https://www.un.org/en/dayof8billion (accessed on 22 March 2023).
- World Bank Open Data. Population, Total and All Countries and Economies. Available online: https://data.worldbank.org/indicator/SP.POP.TOTL (accessed on 22 March 2023).
- U.S. Energy Information Administration; Energy Institute—Statistical Review of World Energy—With Major Processing by Our World in Data. “Primary Energy Consumption” [Dataset]. U.S. Energy Information Administration, “International Energy Data”; Energy Institute, “Statistical Review of World Energy” [original data]. Available online: https://ourworldindata.org/energy-production-consumption (accessed on 22 March 2023).
- U.S. Energy Consumption by Source and Sector. U.S. Energy Consumption by Source and Sector. 2022. Available online: https://www.eia.gov/ (accessed on 22 March 2023).
- U.S. Energy Information Administration. Use of Energy Explained. Energy Use in Homes. Available online: https://www.eia.gov/energyexplained/use-of-energy/homes.php (accessed on 22 March 2023).
- DeCarolis, J.; Angelina, L. Annual Anergy Outlook 2023. 16 March 2023. U.S Energy Information Administration. Independent Statistics and Analysis. #AEO2023. 2023. Available online: www.eia.gov.aeo (accessed on 22 March 2023).
- Roth, D. Louisiana Hurricane History; National Weather Service: Camp Spring, MD, USA, 2010. Available online: https://www.weather.gov/media/lch/events/lahurricanehistory.pdf (accessed on 22 March 2023).
- What Climate Change Means for Louisiana EPA August 2016 EPA 430-F-16-020. Available online: https://19january2017snapshot.epa.gov/sites/production/files/2016-09/documents/climate-change-la.pdf (accessed on 30 March 2023).
- Gurupatham, S.V.; Jayasinghe, C.; Perera, P. Ranking of walling materials using eco-efficiency for tropical climatic conditions: A survey-based approach. Energy Build. 2021, 253, 111503. [Google Scholar] [CrossRef]
- Roy, S.; Chowdhury, S. Earth as an energy efficient and sustainable building material. Int. J. Chem. Environ. Biol. Sci. 2013, 1, 248–252. [Google Scholar]
- Sen, R.; Bhattacharya, S.P.; Chattopadhyay, S. Are Low-Income Mass Housing Envelops Energy Efficient and Comfortable? A Multi-Objective Evaluation in Warm-Humid Climate. Energy Build. 2021, 245, 111055. [Google Scholar] [CrossRef]
- Matta, F.; Cuéllar-Azcárate, M.C.; Garbin, E. Earthen Masonry Dwelling Structures for Extreme Wind Loads. Eng. Struct. 2015, 83, 163–175. [Google Scholar] [CrossRef]
- Pérez, N.A.; Bucio, L.; Lima, E.; Soto, E.; Cedillo, C. Identification of Allophane and Other Semi-Crystalline and Amorphous Phases on Pre-Hispanic Mexican Adobe Earth Bricks from Cholula, Mexico. Microchem. J. 2016, 126, 349–358. [Google Scholar] [CrossRef]
- Gama-Castro, J.E.; Cruz y Cruz, T.; Pi-Puig, T.; Alcalá-Martínez, R.; Cabadas-Báez, H.; Jasso-Castañeda, C.; Díaz-Ortega, J.; Serafín, S.-P.; López-Aguilar, F.; Vilanova de Allende, R. Arquitectura de Tierra_ El Adobe Como Material de Construcción En La Época Prehispánica. Boletín de la Sociedad de Geológica Mexicana 2012, 64, 177–188. [Google Scholar] [CrossRef]
- Cid-Falceto, J.; Mazarrón, F.R.; Cañas, I. Assessment of Compressed Earth Blocks Made in Spain: International Durability Tests. Constr. Build. Mater. 2012, 37, 738–745. [Google Scholar] [CrossRef]
- Rojas-Valencia, M.N.; Aquino, E. Recycling of Construction Wastes for Manufacturing Sustainable Bricks. Proc. Inst. Civ. Eng. Constr. Mater. 2019, 172, 29–36. [Google Scholar] [CrossRef]
- Aguilar-Penagos, A.; Gómez-Soberón, J.M.; Rojas-Valencia, M.N. Physicochemical, Mineralogical and Microscopic Evaluation of Sustainable Bricks Manufactured with Construction Wastes. Appl. Sci. 2017, 7, 1012. [Google Scholar] [CrossRef]
- Narayanaswamy, A.H.; Walker, P.; Venkatarama Reddy, B.V.; Heath, A.; Maskell, D. Mechanical and Thermal Properties, and Comparative Life-Cycle Impacts, of Stabilised Earth Building Products. Constr. Build. Mater. 2020, 243, 118096. [Google Scholar] [CrossRef]
- Elahi, T.E.; Shahriar, A.R.; Alam, M.K.; Abedin, M.Z. Effectiveness of Saw Dust Ash and Cement for Fabrication of Compressed Stabilized Earth Blocks. Constr. Build. Mater. 2020, 259, 120568. [Google Scholar] [CrossRef]
- Islam, M.S.; Elahi, T.E.; Shahriar, A.R.; Mumtaz, N. Effectiveness of Fly Ash and Cement for Compressed Stabilized Earth Block Construction. Constr. Build. Mater. 2020, 255, 119392. [Google Scholar] [CrossRef]
- Muñoz, P.; Letelier, V.; Muñoz, L.; Bustamante, M.A. Adobe Bricks Reinforced with Paper & Pulp Wastes Improving Thermal and Mechanical Properties. Constr. Build. Mater. 2020, 254, 119314. [Google Scholar] [CrossRef]
- Losini, A.E.; Grillet, A.C.; Bellotto, M.; Woloszyn, M.; Dotelli, G. Natural Additives and Biopolymers for Raw Earth Construction Stabilization—A Review. Constr. Build. Mater. 2021, 304, 124507. [Google Scholar] [CrossRef]
- Roux Gutiérrez, R.S.; Santiago, M.O. Use of the Adobe Bricks Stabilized with 6% Portland Cement and Reinforced with coconut fibers for load bearing walls in Tampico. 2002. Available online: www.tamaulipas.gob.mx/tamaulipas/municipios.htm (accessed on 2 July 2023).
- Taallah, B.; Guettala, A. The Mechanical and Physical Properties of Compressed Earth Block Stabilized with Lime and Filled with Untreated and Alkali-Treated Date Palm Fibers. Constr. Build. Mater. 2016, 104, 52–62. [Google Scholar] [CrossRef]
- Taallah, B.; Guettala, A.; Guettala, S.; Kriker, A. Mechanical Properties and Hygroscopicity Behavior of Compressed Earth Block Filled by Date Palm Fibers. Constr. Build. Mater. 2014, 59, 161–168. [Google Scholar] [CrossRef]
- Donkor, P.; Obonyo, E. Earthen Construction Materials: Assessing the Feasibility of Improving Strength and Deformability of Compressed Earth Blocks Using Polypropylene Fibers. Mater. Des. 2015, 83, 813–819. [Google Scholar] [CrossRef]
- Kumar, N.; Barbato, M. Effects of Sugarcane Bagasse Fibers on the Properties of Compressed and Stabilized Earth Blocks. Constr. Build. Mater. 2022, 315, 125552. [Google Scholar] [CrossRef]
- Danso, H. Improving Water Resistance of Compressed Earth Blocks Enhanced with Different Natural Fibres. Open Constr. Build. Technol. J. 2017, 11, 433–440. [Google Scholar] [CrossRef]
- Gómez-Soberón, J.M.; Cabrera-Covarrubias, F.G.; Almaral-Sánchez, J.L.; Gómez-Soberón, M.C. Fresh-State Properties of Mortars with Recycled Glass Aggregates: Global Unification of Behavior. Adv. Mater. Sci. Eng. 2018, 2018, 1386946. [Google Scholar] [CrossRef]
- Cabrera-Covarrubias, F.G.; Gómez-Soberón, J.M.; Almaral-Sánchez, J.L.; Corral-Higuera, R.C.; Navarro-Ezquerra, A.; Tous-Coll, M. Characterization of three recycled materials for alternative use of mortars. Int. J. Sustain. Mater. Process. ECO Effic. IJSMPE 2014, 1, 69–73. [Google Scholar]
- García-González, J.; Pereira, A.S.; Lemos, P.C.; Almeida, N.; Silva, V.; Candeias, A.; Juan-Valdés, A.; Faria, P. Effect of Surface Biotreatments on Construction Materials. Constr. Build. Mater. 2020, 241, 118019. [Google Scholar] [CrossRef]
- Parracha, J.L.; Pereira, A.S.; Velez da Silva, R.; Silva, V.; Faria, P. Effect of Innovative Bioproducts on the Performance of Bioformulated Earthen Plasters. Constr. Build. Mater. 2021, 277, 122261. [Google Scholar] [CrossRef]
- Ammari, A.; Bouassria, K.; Cherraj, M.; Bouabid, H.; Charif D’ouazzane, S. Combined Effect of Mineralogy and Granular Texture on the Technico-Economic Optimum of the Adobe and Compressed Earth Blocks. Case Stud. Constr. Mater. 2017, 7, 240–248. [Google Scholar] [CrossRef]
- ISO 2591-1:1988; Test sieving—Part 1: Methods Using Test Sieves of Woven Wire Cloth and Perforated Metal Plate. International Organization for Standardization: Geneva, Switzerland, 1988.
- Maïni, S. Production and Use of Compressed Stabilized Earth Blocks, Code of Practice; Auroville Earth Institute: Auroville, India, 2010. [Google Scholar]
- Saidi, M.; Cherif, A.S.; Zeghmati, B.; Sediki, E. Stabilization Effects on the Thermal Conductivity and Sorption Behavior of Earth Bricks. Constr. Build. Mater. 2018, 167, 566–577. [Google Scholar] [CrossRef]
- Barbero-Barrera, M.M.; Jové-Sandoval, F.; González Iglesias, S. Assessment of the Effect of Natural Hydraulic Lime on the Stabilisation of Compressed Earth Blocks. Constr. Build. Mater. 2020, 260, 119877. [Google Scholar] [CrossRef]
- Teixeira, E.R.; Machado, G.; De Adilson, P.; Guarnier, C.; Fernandes, J.; Silva, S.M.; Mateus, R. Mechanical and Thermal Performance Characterisation of Compressed Earth Blocks. Energies 2020, 13, 2978. [Google Scholar] [CrossRef]
- Maskell, D.; Heath, A.; Walker, P. Inorganic Stabilisation Methods for Extruded Earth Masonry Units. Constr. Build. Mater. 2014, 71, 602–609. [Google Scholar] [CrossRef]
- ASTM C 125-03; Standard Terminology Relating to Concrete and Concrete Aggregates. ASTM International: West Conshohocken, PA, USA, 2017.
- Suchorski, D.M. American Concrete Institute (ACI). Aggregates for Concrete; ACI Education: Farmington Hills, MI, USA, 2017; ACI Education Bulletin E1-07; Available online: www.concrete.org (accessed on 15 February 2024).
- Détermination des Références de Compactage d’un Matériau Essai Proctor Normal—Essai Proctor Modifié E: Soils: Investigation and Testing—Determination of the Compaction Cholesterics of a Soil—Standard Proctor Test—Modified Proctor Test, NF P 94-093, Octobre 1999, ICS: 93.020. FA049409, ISSN 0335-3931, AFNOR 5 Septembre 1999 pour prendre effect le 5 octobre 1999. Available online: http://46.4.201.113/CatalogDetails.aspx?id=3822&language=en (accessed on 1 January 2022).
- Mellaikhafi, A.; Tilioua, A.; Souli, H.; Garoum, M.; Alaoui Hamdi, M.A. Characterization of Different Earthen Construction Materials in Oasis of South-Eastern Morocco (Errachidia Province). Case Stud. Constr. Mater. 2021, 14, e00496. [Google Scholar] [CrossRef]
- Bachar, M.; Azzouz, L.; Rabehi, M.; Mezghiche, B. Characterization of a Stabilized Earth Concrete and the Effect of Incorporation of Aggregates of Cork on Its Thermo-Mechanical Properties: Experimental Study and Modeling. Constr. Build. Mater. 2015, 74, 259–267. [Google Scholar] [CrossRef]
- Serbah, B.; Abou-Bekr, N.; Bouchemella, S.; Eid, J.; Taibi, S. Dredged Sediments Valorisation in Compressed Earth Blocks: Suction and Water Content Effect on Their Mechanical Properties. Constr. Build. Mater. 2018, 158, 503–515. [Google Scholar] [CrossRef]
- Jiménez Delgado, M.C.; Guerrero, I.C. The Selection of Soils for Unstabilised Earth Building: A Normative Review. Constr. Build. Mater. 2007, 21, 237–251. [Google Scholar] [CrossRef]
- Louisiana Department of Transportation & Development. Test Procedure Manual, Volume II, Part IV-Soils, 2019, DOTD TR 428 Determining the Attemberg Limits of Soil. Rev 06/04/19. Available online: http://wwwsp.dotd.la.gov/Inside_LaDOTD/Divisions/Engineering/Materials_Lab/TPM_Vol_II_Part_IV/428.pdf (accessed on 1 January 2022).
- Roy, S.; Kumar Bhalla, S. Role of Geotechnical Properties of Soil on Civil Engineering Structures. Resour. Environ. 2017, 7, 103–109. [Google Scholar] [CrossRef]
- Venkatarama Reddy, B.V.; Latha, M.S. Retrieving Clay Minerals from Stabilised Soil Compacts. Appl. Clay Sci. 2014, 101, 362–368. [Google Scholar] [CrossRef]
- Department of Sustainable Natural Resources. Soil Survey Standard Test Method, Linear Shrinkage, LS/P6/A/1 Standard Association of Australia. Available online: https://www.environment.nsw.gov.au/resources/soils/testmethods/ls.pdf (accessed on 1 January 2022).
- Soltani, A.; Azimi, M.; O’Kelly, B.C. Reappraisal of Linear Shrinkage Test for Plasticity Index Determination and Classification of Fine-Grained Soils. Appl. Clay Sci. 2023, 238, 106920. [Google Scholar] [CrossRef]
- Mkaouar, S.; Maherzi, W.; Pizette, P.; Zaitan, H.; Benzina, M. A Comparative Study of Natural Tunisian Clay Types in the Formulation of Compacted Earth Blocks. J. Afr. Earth Sci. 2019, 160, 103620. [Google Scholar] [CrossRef]
- NMX-C-508-ONNCE-2015 Norma Mexicana-Industria de la Construcción—Bloques de Tierra Comprimida Estabilizados con Cal—Especificaciones y Métodos de Ensayo, Organismo nacional de normalización y certificación de la construcción y la edicicación, S.C. Ciudad de México, México [Mexican Norm for the Constrution Industry, Compressed Earth Blocks, Stabilized with Lime—Specifications and Test Methods, Mexico City, Mexico]. 2015. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5432969&fecha=13/04/2016#gsc.tab=0 (accessed on 1 June 2024).
- García-Carreño, L.T.; Navarro Moreno, D.; García Vera, V.E. Bloques de Tierra Comprimida. Estudio y Optimizacion de Prototipo Para Su Comercialización; Escuela Técnica Superior de Arquitectura y Edificación, Universidad Politécnica de Cartagena: Cartagena, Spain, 2020. [Google Scholar]
- Lavie Arsène, M.I.; Frédéric, C.; Nathalie, F. Improvement of Lifetime of Compressed Earth Blocks by Adding Limestone, Sandstone and Porphyry Aggregates. J. Build. Eng. 2020, 29, 101155. [Google Scholar] [CrossRef]
- Trujillo, N.B. Mix Design and Mechanical Characterization of Stabilized Compressed Earth Blocks and Assemblies for the Jemez Pueblo in New Mexico, University of New Mexico, Civil Engineering ETDs. 2016. Available online: https://digitalrepository.unm.edu/ce_etds (accessed on 1 March 2022).
- Lira, A.; Neto, C. Assessing the efficiency of data normality verification tests. Int. J. Math. Comput. Simul. 2013, 7, 106–115. [Google Scholar]
- Fudin, K.; Konovalov, V.; Zaitsev, V.; Teryushkov, V. A model of the influence of the degree of filling of the drum mixer on the quality of the feed mixture. Conf. Ser. Earth Environ. Sci. 2021, 624, 12067. [Google Scholar] [CrossRef]
- Widhate, P.; Zhu, H.; Zeng, Q.; Dong, K. Mixing of Particles in a Rotating Drum with Inclined Axis of Rotation. Process 2020, 8, 1688. [Google Scholar] [CrossRef]
- Yin, K.; Fauchille, A.-L.; Di Fillippo, E.; Othmani, K.; Branchu, S.; Sciara, G.; Kotronis, P. The Influence of Mixing Orders on the Microstructure of Artificially Prepared Sand-Clay Mixtures. Adv. Mater. Sci. Eng. 2001. [Google Scholar] [CrossRef]
- Guettala, A.; Abibsi, A.; Houari, H. Durability Study of Stabilized Earth Concrete under Both Laboratory and Climatic Conditions Exposure. Constr. Build. Mater. 2006, 20, 119–127. [Google Scholar] [CrossRef]
- Willaredt, M.; Nehls, T. Investigation of Water Retention Functions of Artificial Soil-like Substrates for a Range of Mixing Ratios of Two Components. Jour Soil Sedi 2021, 21, 2118–2129. [Google Scholar] [CrossRef]
- González-López, J.R.; Juárez-Alvarado, C.A.; Ayub-Francis, B.; Mendoza-Rangel, J.M. Compaction Effect on the Compressive Strength and Durability of Stabilized Earth Blocks. Constr. Build. Mater. 2018, 163, 179–188. [Google Scholar] [CrossRef]
- Kameni Nematchoua, M.; Ricciardi, P.; Reiter, S.; Yvon, A. A Comparative Study on Optimum Insulation Thickness of Walls and Energy Savings in Equatorial and Tropical Climate. Int. J. Sustain. Built Environ. 2017, 6, 170–182. [Google Scholar] [CrossRef]
- Kumar, N.; Barbato, M.; Holton, R. AE722 Feasibility Study of Affordable Earth Masonry Housing in the U.S. Gulf Coast Region. J. Archit. Eng. 2018, 24. [Google Scholar] [CrossRef]
- Weather Underground, Kenner, LA Weather History, Louis Armstrong New Orleans International Station. Monthly History. Available online: https://www.wunderground.com/history/monthly/us/la/kenner/KMSY/date/2023-4 (accessed on 20 July 2023).
- Weather Underground, Kenner, LA Weather History, Louis Armstrong New Orleans International Station. Monthly History. Available online: https://www.wunderground.com/history/monthly/us/la/kenner/KMSY/date/2023-5 (accessed on 20 July 2023).
- Weather Underground, Kenner, LA Weather History, Louis Armstrong New Orleans International Station. Monthly History. Available online: https://www.wunderground.com/history/monthly/us/la/kenner/KMSY/date/2023-6 (accessed on 20 July 2023).
- Cook, B.J. A Field Apparatus for Measuring Unconfined Compressive Strength. Soil Sci. Soc. Am. J. 1998, 62, 1234–1236. [Google Scholar] [CrossRef]
- Cabrera, S.; González, A.; Rotondaro, R. Compressive Strength in Compressed Earth Blocks. Comparison Between Different Test Methods. Inf. Constr. 2020, 72, 1–12. [Google Scholar] [CrossRef]
- NMX-C-036-ONNCCE-2013; Industria de la Construcción—Mampostería—Resistencia a la Compresión de Bloques, Tabiques o Ladrillos y Tabicones y Adoquines—Método de Ensayo. Norma Mexicana: Mexico City, Mexico, 2013.
- Mark Dirivage, How to Establish Sample Sizes for Process Validation When Destructive or Expensive Testing Is Required, Pharmaceutical on Line, Guest Column. 2017. Available online: https://www.pharmaceuticalonline.com/doc/how-to-establish-sample-sizes-for-process-validation-when-destructive-or-expensive-testing-is-required-0001 (accessed on 1 June 2023).
- Higo, E. Statistical Sample Size Determination Methods for Inspections of Engineering Systems. Ph.D. Thesis, University of Waterloo, Waterloo, ON, Canada, 2018. [Google Scholar]
- NMX-C-037-ONNCCE-2013; Industria de la Construcción—Mampostería—Determinación de la Absorción Total y la Absorción Inicial de Agua en Bloques, Tabiques o Ladrillos y Tabicones—Método de Ensayo. Norma Mexicana: Mexico City, Mexico, 2013.
- UNE 41410-2008; Bloques de Tierra Comprimida para Muros y Tabiques. Definiciones, Especificacionesy Métodos de Ensayo. Norma Española: Madrid, Spain, 2008.
- XP P13-901; Blocs de Terre Comprimée pour Murs et Cloisons. Définitions-Spécifications-Méthodes d’essai-Conditions de Reception. Association Française de Normalisation (AFNOR): Paris, France, 2001.
- Rojas-Valencia, M.N.; Lopez-López, J.A.; Fernández-Rojas, D.Y.; Gómez-Soberón, J.M.; Vaca-Mier, M. Analysis of the Physicochemical and Mineralogical Properties of the Materials Used in the Preparation of Recoblocks. Materials 2020, 13, 3626. [Google Scholar] [CrossRef]
- Aubert, J.E.; Fabbri, A.; Morel, J.C.; Maillard, P. An Earth Block with a Compressive Strength Higher than 45 MPa! Constr. Build. Mater. 2013, 47, 366–369. [Google Scholar] [CrossRef]
- Cid, J.; Mazarrón, F.R.; Cañas, I. Las Normativas de Construcción Con Tierra En El Mundo. Inf. Constr. 2011, 63, 159–169. [Google Scholar] [CrossRef]
- UDC 666.762.712; Indian Standard, Common Burnt Clay Building Bricks – Specification (Fifth Revision - Fourth Reprint), January. Bureau of Indian Standards: New Delhi, India, January 2005.
- Kumar, A.; Kumar, R.; Das, V.; Jhatial, A.A.; Ali, T.H. Assessing the Structural Efficiency and Durability of Burnt Clay Bricks Incorporating Fly Ash and Silica Fume as Additives. Constr. Build. Mater. 2021, 310, 125233. [Google Scholar] [CrossRef]
- 2015 International Building Code. Available online: https://codes.iccsafe.org/content/IBC2015 (accessed on 1 June 2022).
- Akoglu, H. User’s guide to correlation coefficients. Turk. J. Emerg. Med. 2018, 18, 91–93. [Google Scholar] [CrossRef]
- Guillen, J.; Rojas-Valencia, M.N. Study of the Properties of the Echerhirhu-Block Made with Opuntia Ficus Mucilage for Use in the Construction Industry. Case Stud. Constr. Mater. 2019, 10, e00216. [Google Scholar] [CrossRef]
- Limami, H.; Manssouri, I.; Cherkaoui, K.; Khaldoun, A. Mechanical and Physicochemical Performances of Reinforced Unfired Clay Bricks with Recycled Typha-Fibers Waste as a Construction Material Additive. Clean. Eng. Technol. 2021, 2, 100037. [Google Scholar] [CrossRef]
- Ewen Blokker, L.; Knight, H. Louisiana’s Bousillage Tradition: Investigation of Past Techniques for Future Practice; Fitch Mid-Career Grant Final Report; Tulane School of Architecture: New Orleans, LA, USA, 2009. [Google Scholar]
- Bostijn, N.; Dhondt, J.; Ryckaert, A.; Szabó, E.; Dhondt, W.; Van Snick, B.; Vanhoorne, V.; Vervaet, C.; De Beer, T. A Multivariate Approach to Predict the Volumetric and Gravimetric Feeding Behavior of a Low Feed Rate Feeder Based on Raw Material Properties. Int. J. Pharm. 2019, 557, 342–353. [Google Scholar] [CrossRef] [PubMed]
- Hou, Q.F.; Dong, K.J.; Yu, A.B. DEM Study of the Flow of Cohesive Particles in a Screw Feeder. Powder Technol. 2014, 256, 529–539. [Google Scholar] [CrossRef]
- Udo, M.; Esezobor, D.; Afolalu, A.; Onovo, H.; Ongbali, S.; Okokpujie, I.P. Investigation of Balling Characteristics of Mixture of Iron Oxide Bearing Wastes and Iron Ore Concentrates. IOP Conf. Ser. Mater. Sci. Eng. 2018, 413, 012042. [Google Scholar] [CrossRef]
- Morel, J.C.; Pkla, A.; Walker, P. Compressive Strength Testing of Compressed Earth Blocks. Constr. Build. Mater. 2007, 21, 303–309. [Google Scholar] [CrossRef]
- Larbi, S.; Khaldi, A.; Maherzi, W.; Abriak, N.E. Formulation of Compressed Earth Blocks Stabilized by Glass Waste Activated with NaOH Solution. Sustainability 2022, 14, 102. [Google Scholar] [CrossRef]
- Nassar, R.U.D.; Soroushian, P. Strength and Durability of Recycled Aggregate Concrete Containing Milled Glass as Partial Replacement for Cement. Constr. Build. Mater. 2012, 29, 368–377. [Google Scholar] [CrossRef]
Material (%) | Base Mix River Sand | Sand Replacement | Sand and Stone Replacement | Secondary Materials (R-G and CDW) | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
B5 | B10 | B15 | R-G5 | R-G10 | R-G15 | CDW5 | CDW10 | CDW15 | R-GCDW5 | R-GCDW10 | R-GCDW15 | |
Lime | 5 | 10 | 15 | 5 | 10 | 15 | 5 | 10 | 15 | 5 | 10 | 15 |
Water | 10 | 9 | 11 | 9 | 9 | 11 | 14 | 15 | 14 | 12 | 12 | 13 |
SCS | 16 | 16 | 15 | 17 | 17 | 15 | 21 | 19 | 17 | 23 | 20 | 18 |
SWD | 16 | 16 | 15 | 17 | 17 | 15 | 21 | 19 | 17 | 23 | 20 | 18 |
MRS | 38 | 36 | 31 | - | - | - | - | - | - | - | - | - |
R-G | - | - | - | 37 | 35 | 31 | - | - | - | 13 | 14 | 13 |
CDW | - | - | - | - | - | - | 38 | 37 | 38 | 19 | 19 | 19 |
PG | 7 | 7 | 7 | 7 | 6 | 7 | - | - | - | 3 | 3 | 3 |
LS | 7 | 7 | 7 | 7 | 6 | 7 | - | - | - | 3 | 3 | 3 |
TOTAL | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 | 100 |
Matrices and Batches | Width | Length | Height |
---|---|---|---|
BS | AUP | AUP | 30% ET |
B10 | AUP | AUP | AUP |
B15 | 8% ET | AUP | 33% ET |
R-G5 | AUP | AUP | 25% ET |
R-G10 | AUP | AUP | 55% ET |
R-G15 | AUP | AUP | 17% ET |
CDW5 | AUP | AUP | AUP |
CDW10 | 8% ET | AUP | AUP |
CDW15 | AUP | AUP | 8% ET |
R-GCDW5 | AUP | AUP | AUP |
R-GCDW10 | AUP | AUP | AUP |
R-GCDW15 | AUP | AUP | 9% ET |
Batch/Matrix | Int Abs Coeff(10), g/(cm2 × min0.5). Rank from Lowest to Highest | Simple Compression Strength Resistance (MPa) | Height Reduction as an Effect of Compression (%) | Dry Density T1 (kg/m3) | Dry Density T2 (kg/m3) |
---|---|---|---|---|---|
Rank from Higher to Lower | |||||
B5 | |||||
B10 | |||||
B15 | |||||
R-G5 | |||||
R-G10 | |||||
R-G15 | |||||
CDW5 | |||||
CDW10 | |||||
CDW15 | |||||
R-GCDW5 | |||||
R-GCDW10 | |||||
R-GCDW15 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reyna-Ruiz, C.; Gómez-Soberón, J.M.; Rojas-Valencia, M.N. Feasibility and Application of Local Closed-Loop Materials to Produce Compressed and Stabilized Earth Blocks. Materials 2024, 17, 3358. https://doi.org/10.3390/ma17133358
Reyna-Ruiz C, Gómez-Soberón JM, Rojas-Valencia MN. Feasibility and Application of Local Closed-Loop Materials to Produce Compressed and Stabilized Earth Blocks. Materials. 2024; 17(13):3358. https://doi.org/10.3390/ma17133358
Chicago/Turabian StyleReyna-Ruiz, Catalina, José Manuel Gómez-Soberón, and María Neftalí Rojas-Valencia. 2024. "Feasibility and Application of Local Closed-Loop Materials to Produce Compressed and Stabilized Earth Blocks" Materials 17, no. 13: 3358. https://doi.org/10.3390/ma17133358
APA StyleReyna-Ruiz, C., Gómez-Soberón, J. M., & Rojas-Valencia, M. N. (2024). Feasibility and Application of Local Closed-Loop Materials to Produce Compressed and Stabilized Earth Blocks. Materials, 17(13), 3358. https://doi.org/10.3390/ma17133358