Next Issue
Volume 17, August-1
Previous Issue
Volume 17, July-1
 
 
materials-logo

Journal Browser

Journal Browser

Materials, Volume 17, Issue 14 (July-2 2024) – 247 articles

Cover Story (view full-size image): Our research focuses on the separation of polar gases from non-polar ones as H2 and CH4. We propose a novel functional group (FG) consisting of an ethylene glycol monomer and cis-amide head for carbon nanotubes (CNTs) with a calibrated diameter. This functionalization enhances the affinity of the CNTs towards polar gases, as our study predicts that the proposed FG adsorbs the more polar H2O molecules significantly more than CH4 and H2. This innovative approach offers a promising solution for more efficient gas separation processes in several applications. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
16 pages, 4833 KiB  
Article
Improved Energy Density at High Temperatures of FPE Dielectrics by Extreme Low Loading of CQDs
by Huan Wang, Hang Luo, Yuan Liu, Fan Wang, Bo Peng, Xiaona Li, Deng Hu, Guanghu He and Dou Zhang
Materials 2024, 17(14), 3625; https://doi.org/10.3390/ma17143625 - 22 Jul 2024
Viewed by 940
Abstract
Electrostatic capacitors, with the advantages of high-power density, fast charging–discharging, and outstanding cyclic stability, have become important energy storage devices for modern power electronics. However, the insulation performance of the dielectrics in capacitors will significantly deteriorate under the conditions of high temperatures and [...] Read more.
Electrostatic capacitors, with the advantages of high-power density, fast charging–discharging, and outstanding cyclic stability, have become important energy storage devices for modern power electronics. However, the insulation performance of the dielectrics in capacitors will significantly deteriorate under the conditions of high temperatures and electric fields, resulting in limited capacitive performance. In this paper, we report a method to improve the high-temperature energy storage performance of a polymer dielectric for capacitors by incorporating an extremely low loading of 0.5 wt% carbon quantum dots (CQDs) into a fluorene polyester (FPE) polymer. CQDs possess a high electron affinity energy, enabling them to capture migrating carriers and exhibit a unique Coulomb-blocking effect to scatter electrons, thereby restricting electron migration. As a result, the breakdown strength and energy storage properties of the CQD/FPE nanocomposites are significantly enhanced. For instance, the energy density of 0.5 wt% CQD/FPE nanocomposites at room temperature, with an efficiency (η) exceeding 90%, reached 9.6 J/cm3. At the discharge energy density of 0.5 wt%, the CQD/FPE nanocomposites remained at 4.53 J/cm3 with an efficiency (η) exceeding 90% at 150 °C, which surpasses lots of reported results. Full article
Show Figures

Figure 1

12 pages, 14655 KiB  
Article
Configurational Isomerism in Bimetallic Decametalates
by Aleksandar Kondinski
Materials 2024, 17(14), 3624; https://doi.org/10.3390/ma17143624 - 22 Jul 2024
Viewed by 591
Abstract
In this work, we report on the development of a computational algorithm that explores the configurational isomer space of bimetallic decametalates with general formula MxM10xO28q. For x being a natural number in the [...] Read more.
In this work, we report on the development of a computational algorithm that explores the configurational isomer space of bimetallic decametalates with general formula MxM10xO28q. For x being a natural number in the range of 0 to 10, the algorithm identifies 318 unique configurational isomers. The algorithm is used to generate mixed molybdenum(VI)–vanadium(V) systems MoxV10xO288 for x=0,1,2, and 3 that are of experimental relevance. The application of the density functional theory (DFT) effectively predicts stability trends that correspond well with empirical observations. In dimolybdenum-substituted decavanadate systems, we discover that a two-electron reduction preferentially stabilizes a configurational isomer due to the formation of metal–metal bonding. The particular polyoxometalate structure is of interest for further experimental studies. Full article
(This article belongs to the Special Issue From Molecular to Supramolecular Materials)
Show Figures

Graphical abstract

21 pages, 7800 KiB  
Article
Polarization-Accelerated Seawater Splash Simulation for Rapid Evaluation of Protection Performance of an Epoxy Coating on Carbon Steel
by Yuqing Xu, Guangling Song, Dajiang Zheng, Changsheng Liu and Enhou Han
Materials 2024, 17(14), 3623; https://doi.org/10.3390/ma17143623 - 22 Jul 2024
Viewed by 652
Abstract
The application of organic coatings is the most cost-effective and common method for metallic equipment toward corrosion, whose anti-corrosion property needs to be improved and evaluated in a short time. To rapidly and rationally assess the anti-corrosion property of organic coatings in the [...] Read more.
The application of organic coatings is the most cost-effective and common method for metallic equipment toward corrosion, whose anti-corrosion property needs to be improved and evaluated in a short time. To rapidly and rationally assess the anti-corrosion property of organic coatings in the ocean splash zone, a new accelerated test was proposed. In the study, the corrosion protection property of the coating samples was measured by an improved AC-DC-AC test in a simulated seawater of 3.5 wt.% NaCl solution, a simulated ocean splash zone test and a new accelerated test combining the above two tests. The results showed that the corrosion rate of the coating samples was high in the improved AC-DC-AC test, which lost its anti-corrosion property after 24 cycles equal to 96 h. The main rapid failure reason was that the time of the water and corrosive media arriving at the carbon steel substrate under the alternating cathodic and anodic polarization with symmetrical positive and negative electric charges was shortened. The entire impedance of the coating samples was improved by about 1.6 times more than that in the initial early time in the simulated ocean splash zone test, which was caused by the damage effect from the salt spraying, drying, humidifying, salt immersion, high temperature and UVA irradiation being weaker than the enhancement effect from the post-curing process by the UVA irradiation. In the new accelerated test, the samples lost their corrosion resistance after 12 cycles equal to 288 h with the fastest failure rate. On account of the coupling process of the salt spraying, drying, humidifying, salt immersion, high temperature combined with the cathodic and anodic polarization and the UVA irradiation, the penetration and transmission rate of water and corrosive media in the coating were further accelerated, the corrosion rate on the carbon steel substrate was reinforced even larger and the destruction of the top polymer molecules was more serious. The new accelerated test showed the strongest damage-acceleration effect than that in the other two tests. Full article
Show Figures

Figure 1

15 pages, 5073 KiB  
Article
In Situ Prediction of Microstructure and Mechanical Properties in Laser-Remelted Al-Si Alloys: Towards Enhanced Additive Manufacturing
by Metin Kayitmazbatir and Mihaela Banu
Materials 2024, 17(14), 3622; https://doi.org/10.3390/ma17143622 - 22 Jul 2024
Viewed by 745
Abstract
Laser surface remelting of aluminum alloys has emerged as a promising technique to enhance mechanical properties through refined microstructures. This process involves rapid cooling rates ranging from 103 to 108 °C/s, which increase solid solubility within aluminum alloys, shifting their eutectic [...] Read more.
Laser surface remelting of aluminum alloys has emerged as a promising technique to enhance mechanical properties through refined microstructures. This process involves rapid cooling rates ranging from 103 to 108 °C/s, which increase solid solubility within aluminum alloys, shifting their eutectic composition to a larger value of silicon content. Consequently, the resulting microstructure combines a strengthened aluminum matrix with silicon fibers. This study focuses on the laser scanning of Al-Si aluminum alloy to reduce the size of aluminum matrix spacings and transform fibrous silicon particles from micrometer to nanometer dimensions. Analysis revealed that the eutectic structure contained 17.55% silicon by weight, surpassing the equilibrium eutectic composition of 12.6% silicon. Microstructure dimensions within the molten zones, termed ‘melt pools’, were extensively examined using Scanning Electron Microscopy (SEM) at intervals of approximately 20 μm from the surface. A notable increase in hardness, exceeding 50% compared to the base plate, was observed in the melt pool regions. Thus, it is exemplified that laser surface remelting introduces a novel strengthening mechanism in the alloy. Moreover, this study develops an in situ method for predicting melt pool properties and dimensions. A predictive model is proposed, correlating energy density and spectral signals emitted during laser remelting with mechanical properties and melt pool dimensions. This method significantly reduces characterization time from days to seconds, offering a streamlined approach for future studies in additive manufacturing. Full article
(This article belongs to the Special Issue Advanced Welding in Alloys and Composites)
Show Figures

Figure 1

17 pages, 7653 KiB  
Article
Surface Analysis of Stainless Steel Electrodes Cleaned by Atmospheric Pressure Plasma
by Jia Zhang, Mengjia Dang, Cheng Luo, Yongshan Ba and Qingkai Li
Materials 2024, 17(14), 3621; https://doi.org/10.3390/ma17143621 - 22 Jul 2024
Viewed by 884
Abstract
The Z-pinch device is a critical component in inertial confinement fusion, where stainless steel electrodes must withstand high current densities of up to MA/cm2. Gases and difficult-to-remove impurities adhering to the electrode surfaces can ionize, significantly impacting the device’s electrical conductivity [...] Read more.
The Z-pinch device is a critical component in inertial confinement fusion, where stainless steel electrodes must withstand high current densities of up to MA/cm2. Gases and difficult-to-remove impurities adhering to the electrode surfaces can ionize, significantly impacting the device’s electrical conductivity efficiency. In this paper, the surface of stainless steel electrodes was subjected to cleaning using a large-area plasma jet under atmospheric pressure. The wettability, chemical composition, and chemical state of the electrode surface were characterized using a water contact angle measuring instrument and X-ray photoelectron spectroscopy (XPS). The cleaning effect under different discharge parameters was systematically analyzed. The results revealed a significant reduction in the content of carbon pollutants on the surface of stainless steel electrodes, decreasing from 62.95% to a minimum of 37.68% after plasma cleaning. Moreover, the water contact angle decreased from 70.76° to a minimum of 29.31°, and the content of water molecules adsorbed on the surface decreased from 17.31% to a minimum of 5.9%. Based on the evolution process of micro-element content and chemical state on the surface of stainless steel electrode, the cleaning process of adhering substances on the surface by atmospheric pressure plasma was analyzed by the layered cleaning model for surface pollutants on stainless steel. Full article
Show Figures

Figure 1

18 pages, 9486 KiB  
Article
Experimental Study on the Effect of Polycarboxylate Superplasticizer on the Performance of Cement-Based Grouting Materials
by Zhijie Yu, Shujie Liu, Jiwei Zhang, Wen He, Qinghao Tian, Le Tian and Jinze Sun
Materials 2024, 17(14), 3620; https://doi.org/10.3390/ma17143620 - 22 Jul 2024
Viewed by 865
Abstract
Polycarboxylate superplasticizers BMC-L and BMC-S were utilized as modifiers in the formulation of novel cement-based grouting materials. Indoor tests were conducted on 32 groups of cement slurries, varying by water–cement ratio (0.5:1 and 0.6:1) and modifier content (0, 2‰, 4‰, 6‰, 8‰, 10‰, [...] Read more.
Polycarboxylate superplasticizers BMC-L and BMC-S were utilized as modifiers in the formulation of novel cement-based grouting materials. Indoor tests were conducted on 32 groups of cement slurries, varying by water–cement ratio (0.5:1 and 0.6:1) and modifier content (0, 2‰, 4‰, 6‰, 8‰, 10‰, 12‰, and 14‰), to test their density, funnel viscosity, water separation rate, and stone rate. Four groups of slurry modified with BMC-L were selected as the preferred slurry, and the apparent viscosity test, uniaxial, and triaxial compression test of the slurry stone body were conducted. The study investigated the influence of BMC-L on various properties of the slurry, including its apparent viscosity, uniaxial compressive strength, stress–strain relationships, shear strength parameters, and elastic modulus. Ultimately, the pore structure and phase composition of the slurry stone body were detected by Nuclear Magnetic Resonance (NMR) and X-ray Diffraction (XRD), and the impact of BMC-L on slurry performance was examined from a microstructural perspective. Results indicate that the two polycarboxylate superplasticizers exert minimal influence on the density and water separation rate of the slurry. Within the effective incorporation range of the polycarboxylate superplasticizer, increasing the dosage correlates with a decrease in both the stone rate and viscosity of the slurry. BMC-L significantly enhances the mechanical properties of the slurry stone body by promoting more complete cement hydration and reducing porosity. The uniaxial compressive strength of slurry stone body with a 6 ‰ BMC-L dosage reached 29.7 MPa after 7 days and 38.5 MPa after 28 days of curing, representing increases of 118.4% and 64%, respectively, compared to masonry with 0 BMC-L dosage. The shear strength parameters and elastic modulus of the slurry stone body also showed corresponding increases. Full article
Show Figures

Figure 1

11 pages, 6183 KiB  
Article
Brittle Fracture Behavior of Sn-Ag-Cu Solder Joints with Ni-Less Surface Finish via Laser-Assisted Bonding
by Seonghui Han, Sang-Eun Han, Tae-Young Lee, Deok-Gon Han, Young-Bae Park and Sehoon Yoo
Materials 2024, 17(14), 3619; https://doi.org/10.3390/ma17143619 - 22 Jul 2024
Cited by 1 | Viewed by 927
Abstract
In this study, we investigated the brittle fracture behavior of Sn-3.0Ag-0.5Cu (SAC305) solder joints with a Direct Electroless Gold (DEG) surface finish, formed using laser-assisted bonding (LAB) and mass reflow (MR) techniques. Commercial SAC305 solder balls were used to ensure consistency. LAB increases [...] Read more.
In this study, we investigated the brittle fracture behavior of Sn-3.0Ag-0.5Cu (SAC305) solder joints with a Direct Electroless Gold (DEG) surface finish, formed using laser-assisted bonding (LAB) and mass reflow (MR) techniques. Commercial SAC305 solder balls were used to ensure consistency. LAB increases void fractions and coarsens the primary β-Sn phase with higher laser power, resulting in a larger eutectic network area fraction. In contrast, MR produces solder joints with minimal voids and a thicker intermetallic compound (IMC) layer. LAB-formed joints exhibit higher high-speed shear strength and lower brittle fracture rates compared to MR. The key factor in the reduced brittle fracture in LAB joints is the thinner IMC layer at the joint interface. This study highlights the potential of LAB in enhancing the mechanical reliability of solder joints in advanced electronic packaging applications. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

17 pages, 6017 KiB  
Article
Properties of Cemented Filling Materials Prepared from Phosphogypsum-Steel Slag–Blast-Furnace Slag and Its Environmental Effect
by Kai Li, Lishun Zhu, Zhonghu Wu and Xiaomin Wang
Materials 2024, 17(14), 3618; https://doi.org/10.3390/ma17143618 - 22 Jul 2024
Cited by 2 | Viewed by 989
Abstract
Phosphogypsum (PG) occupies a large amount of land due to its large annual production and low utilization rate, and at the same time causes serious environmental problems due to toxic impurities. PG is used for mine backfill, and industrial solid waste is a [...] Read more.
Phosphogypsum (PG) occupies a large amount of land due to its large annual production and low utilization rate, and at the same time causes serious environmental problems due to toxic impurities. PG is used for mine backfill, and industrial solid waste is a curing agent for PG, which can save the filling cost and reduce environmental pollution. In this paper, PG was used as a raw material, combined with steel slag (SS) and ground granulated blast-furnace slag (GGBS) under the action of an alkali-activated agent (NaOH) to prepare all-solid waste phosphogypsum-based backfill material (PBM). The effect of the GGBS to SS ratio on the compressive strength and toxic leaching of PBM was investigated. The chemical composition of the raw materials was obtained by XRF analysis, and the mineral composition and morphology of PBM and its stabilization/curing mechanism against heavy metals were analyzed using XRD and SEM-EDS. The results showed that the best performance of PBM was achieved when the contents of PG, GGBS, and SS were 80%, 13%, and 7%, the liquid-to-solid ratio was 0.4, and the mass concentration of NaOH was 4%, with a strength of 2.8 MPa at 28 days. The leaching concentration of fluorine at 7 days met the standard of groundwater class IV (2 mg/L), and the leaching concentration of phosphorus was detected to be less than 0.001 mg/L, and the leaching concentration of heavy metals met the environmental standard at 14 d. The hydration concentration in PBM met the environmental standard. The hydration products in PBM are mainly ettringite and C-(A)-S-H gel, which can effectively stabilize the heavy metals in PG through chemical precipitation, physical adsorption, and encapsulation. Full article
(This article belongs to the Special Issue Alkali-Activated Binders: Properties and Applications in Construction)
Show Figures

Figure 1

11 pages, 6319 KiB  
Article
Microstructural Evolution of Quaternary AlCoCrNi High-Entropy Alloys during Heat Treatment
by Elyorjon Jumaev, Hae-Jin Park, Muhammad Aoun Abbas, Dilshodbek Yusupov, Sung-Hwan Hong and Ki-Buem Kim
Materials 2024, 17(14), 3617; https://doi.org/10.3390/ma17143617 - 22 Jul 2024
Viewed by 920
Abstract
This study examines the microstructural evolution and mechanical properties of quaternary AlCoCrNi high-entropy alloys after heat treatment at 873 K for 72 and 192 h. The changes in nanostructure and phase transformation based on the heat treatment duration were as follows: B2 dendrite [...] Read more.
This study examines the microstructural evolution and mechanical properties of quaternary AlCoCrNi high-entropy alloys after heat treatment at 873 K for 72 and 192 h. The changes in nanostructure and phase transformation based on the heat treatment duration were as follows: B2 dendrite + BCC interdendrite and sigma phases after 72 h; B2 dendrite and interdendritic sigma phases + BCC after 192 h. After annealing, the morphology of the dendritic region shifted from spherical to needle-like, and the interdendritic region transformed from a spinodal-like to a plate-like morphology. Additionally, a phase transformation was observed in the dendritic regions of the annealed alloys at the nano-scale. The presence of the sigma phase in AlCoCrNi high-entropy alloys significantly improved the yield strength to around 1172 MPa; nevertheless, it decreased the compressive strain rapidly to 0.62%. Full article
(This article belongs to the Special Issue Characterization, Properties, and Applications of New Metallic Alloys)
Show Figures

Figure 1

22 pages, 6905 KiB  
Article
Dimensional Accuracy of Different Three-Dimensional Printing Models as a Function of Varying the Printing Parameters
by Christin Arnold, Lea Riß, Jeremias Hey and Ramona Schweyen
Materials 2024, 17(14), 3616; https://doi.org/10.3390/ma17143616 - 22 Jul 2024
Viewed by 908
Abstract
Even in digital workflows, models are required for fitting during the fabrication of dental prostheses. This study examined the influence of different parameters on the dimensional accuracy of three-dimensionally printed models. A stereolithographic data record was generated from a master model (SOLL). With [...] Read more.
Even in digital workflows, models are required for fitting during the fabrication of dental prostheses. This study examined the influence of different parameters on the dimensional accuracy of three-dimensionally printed models. A stereolithographic data record was generated from a master model (SOLL). With digital light processing (DLP) and stereolithography (SLA) printing systems, 126 models were produced in several printing runs—SolFlex350 (S) (DLP, n = 24), CaraPrint 4.0 (C) (DLP, n = 48) and Form2 (F) (SLA, n = 54)—and their accuracy was compared with plaster and milled polyurethane models. In addition to the positioning on the build platform, a distinction was made between parallel and across arrangement of the models to the printer’s front, solid and hollow models, and printing with and without support structures. For accuracy assessment, five measurement sections were defined on the model (A–E) and measured using a calibrated digital calliper and digital scans in combination with the GOM Inspect Professional software 2021. The mean deviation between the measurement methods for all distances was 79 µm. The mean deviation of the models from the digital SOLL model were 207.1 µm for the S series, 25.1 µm for the C series and 141.8 µm for the F series. While positioning did not have an influence, there were clinically relevant differences mainly regarding the choice of printer, but also individually in alignment, model structure and support structures. Full article
(This article belongs to the Special Issue Advanced Additive Manufacturing and Application)
Show Figures

Figure 1

29 pages, 17786 KiB  
Article
A Comparative Study on the Wear Performance and High-Temperature Oxidation of Co-Free Cermets and Hardmetals
by Ángel Biedma, Gabriel Sánchez, María de Nicolás, Claudio Bertalan, Ralph Useldinger, Luis Llanes and Elena Gordo
Materials 2024, 17(14), 3615; https://doi.org/10.3390/ma17143615 - 22 Jul 2024
Viewed by 1390
Abstract
The present investigation addresses the mechanical properties, wear behaviour, and high-temperature oxidation of cermets and hardmetals based on either Ti(C,N) or WC and a metal binder based on Fe15Ni or Fe15Ni10Cr. This study also includes a commercial-grade WC-Co for comparative purposes. The production [...] Read more.
The present investigation addresses the mechanical properties, wear behaviour, and high-temperature oxidation of cermets and hardmetals based on either Ti(C,N) or WC and a metal binder based on Fe15Ni or Fe15Ni10Cr. This study also includes a commercial-grade WC-Co for comparative purposes. The production of these materials involved a powder metallurgy and sinter-HIP processing route under identical conditions. It is found that WC-based materials have superior mechanical properties, including hardness, fracture toughness, transversal rupture strength (TRS), and wear response, compared to Ti(C,N)-based materials. However, the latter show better oxidation behaviour than the former. Notably, WC-FeNi exhibits a higher hardness and TRS than the commercial-grade material (an increase of 7% and 9%, respectively). The difference in wear behaviour is due to the difference in wear mechanisms. In this regard, cermets wear through a tribolayer of Ti and Fe oxides, while hardmetals primarily wear through abrasion from ploughing. Thus, hardmetals exhibit a lower coefficient of friction (COF) and wear rate than cermets. Furthermore, Ti(C,N)-based materials form a protective layer of TiO2, which enhances their integrity and reduces mass gain. The addition of Cr to the FeNi binder only appears to have a clear effect on the TRS of the materials. Full article
(This article belongs to the Special Issue Advanced High-Performance Metal Matrix Composites (MMCs))
Show Figures

Graphical abstract

13 pages, 3483 KiB  
Article
Inverse Design of Low-Resistivity Ternary Gold Alloys via Interpretable Machine Learning and Proactive Search Progress
by Hang Che, Tian Lu, Shumin Cai, Minjie Li and Wencong Lu
Materials 2024, 17(14), 3614; https://doi.org/10.3390/ma17143614 - 22 Jul 2024
Viewed by 839
Abstract
Ternary gold alloys (TGAs) are highly regarded for their excellent electrical properties. Electrical resistivity is a crucial indicator for evaluating the electrical performance of TGAs. To explore new promising TGAs with lower resistivity, we developed a reverse design approach integrating machine learning techniques [...] Read more.
Ternary gold alloys (TGAs) are highly regarded for their excellent electrical properties. Electrical resistivity is a crucial indicator for evaluating the electrical performance of TGAs. To explore new promising TGAs with lower resistivity, we developed a reverse design approach integrating machine learning techniques and proactive searching progress (PSP) method. Compared with other models, the support vector regression (SVR) was determined to be the most optimal model for resistivity prediction. The training and test sets yielded R2 values of 0.73 and 0.77, respectively. The model interpretation indicated that lower electrical resistivity was associated with the following conditions: a van der Waals Radius (Vrt) of 0, a Vr (another van der Waals Radius) of less than 217, and a mass attenuation coefficient of MoKα (Macm) greater than 77.5 cm2g−1. Applying the PSP method, we successfully identified eight candidates whose resistivity was lower than that of the sample with the lowest resistivity in the dataset by more than 53–60%, e.g., Au1.000Cu4.406Pt1.833 and Au1.000Pt2.232In1.502. Finally, the candidates were validated to possess low resistivity through the pattern recognition method. Full article
Show Figures

Graphical abstract

15 pages, 12488 KiB  
Article
Co-Extraction of Aluminum and Silicon and Kinetics Analysis in Carbochlorination Process of Low-Grade Bauxite
by Xinxin Zhao, Yan Liu, Long Wang, Yutong Hua, Tianhao Cheng, Tingan Zhang and Qiuyue Zhao
Materials 2024, 17(14), 3613; https://doi.org/10.3390/ma17143613 - 22 Jul 2024
Viewed by 754
Abstract
Addressing the issue that the Bayer process is not suitable for low-grade bauxite, carbochlorination was proposed to recover aluminum and silicon from low-grade bauxite. This study focused on the behavior of aluminum and silicon during the carbochlorination process of low-grade bauxite. The impact [...] Read more.
Addressing the issue that the Bayer process is not suitable for low-grade bauxite, carbochlorination was proposed to recover aluminum and silicon from low-grade bauxite. This study focused on the behavior of aluminum and silicon during the carbochlorination process of low-grade bauxite. The impact of various process parameters on the chlorination efficiency was investigated, and the chlorination mechanism and kinetics of aluminum and silicon chlorination in bauxite were analyzed and discussed. Under optimal experimental conditions, the chlorination efficiency of Al2O3 and SiO2 reached 94.93% and 86.32%, respectively. The carbochlorination of aluminum and silicon in bauxite adhered to a shrinking, unreacted core model governed by gas diffusion within the product layer. This process can be bifurcated into two stages. Additionally, calculations were conducted to determine the apparent activation energy and reaction order of the chlorination processes involving Al2O3 and SiO2. Examining the chlorination mechanism revealed that the bauxite carbochlorination encompasses transformations among various minerals. Notably, the aluminum component prefers to participate in the carbothermal chlorination reaction over silicon. Full article
Show Figures

Figure 1

14 pages, 11338 KiB  
Article
Experimental Permeability and Porosity Determination of All-Oxide Ceramic Matrix Composite Material
by Ryszard Szwaba, Pawel Madejski, Piotr Kaczynski, Marcin Kurowski, Mathias Kunz, Katarzyna Berent and Tomasz Ochrymiuk
Materials 2024, 17(14), 3612; https://doi.org/10.3390/ma17143612 - 22 Jul 2024
Viewed by 712
Abstract
This paper presents an investigation into the water permeability of an all-oxide ceramic matrix composite. To determine the parameters and characterize the water permeability of the ceramic composite material, an experimental study was carried out in which a dedicated test rig was constructed [...] Read more.
This paper presents an investigation into the water permeability of an all-oxide ceramic matrix composite. To determine the parameters and characterize the water permeability of the ceramic composite material, an experimental study was carried out in which a dedicated test rig was constructed and commissioned. A total of five different configurations of composite tubes were tested. They differed in fibre roving strength, winding angle, fibre bundle arrangement during winding, and matrix grain size distribution. To better understand the internal structure of the analysed ceramic matrix composite material, the experimental study used scanning electron microscopy for microstructure and porosity observation. The tested tubes will be used as liners in an oxy-combustion chamber in future studies. The experiments obtained new and interesting results regarding the water permeability of the ceramic matrix composite with different structural parameters. It was also observed that, as with some porous materials, the permeability of ceramic matrix composites decreases with time as more and more liquid is pressed through it. Full article
Show Figures

Figure 1

20 pages, 7012 KiB  
Article
Surface Modification of Silk Fabric by Polysaccharide Derivatives towards High-Quality Printing Performance Using Bio-Based Gardenia Blue Ink
by Yan Liang, Ni Wang, Qing Li and Huiyu Jiang
Materials 2024, 17(14), 3611; https://doi.org/10.3390/ma17143611 - 22 Jul 2024
Viewed by 757
Abstract
Ink-jet-printed silk, a premium textile material, was achieved by utilizing a bio-based gardenia blue dye. However, the sharpness of the printing pattern is difficult to control due to the limited water-retention capacity of silk. To address this issue, three polysaccharide derivatives, namely, sodium [...] Read more.
Ink-jet-printed silk, a premium textile material, was achieved by utilizing a bio-based gardenia blue dye. However, the sharpness of the printing pattern is difficult to control due to the limited water-retention capacity of silk. To address this issue, three polysaccharide derivatives, namely, sodium alginate (SA), low-viscosity hydroxypropyl methyl cellulose (HPMC-I), and high-viscosity hydroxypropyl methyl cellulose (HPMC-II), were employed as thickeners to modify the silk by the dipping–padding method. Firstly, the preparation of the gardenia blue ink and the rheology assessment of the thickener solution were conducted. Furthermore, the impacts of different thickeners on the micro-morphology, element composition, and hydrophilicity of the silk, along with the wetting behavior of the ink on the silk, were analyzed comparatively in order to identify an appropriate thickener for preserving pattern outlines. Lastly, the color features, color fastness, and wearing characteristics of the printed silk were discussed to evaluate the overall printing quality. Research results showed that the optimized ink formulation, comprising 12% gardenia blue, 21% alcohols, and 5.5% surfactant, met the requirements for ink-jet printing (with a viscosity of 4.48 mPa·s, a surface tension of 34.12 mN/m, and a particle size of 153 nm). The HPMC-II solution exhibited prominent shear-thinning behavior, high elasticity, and thixotropy, facilitating the achievement of an even modification effect. The treatment of the silk with HPMC-II resulted in the most notable decrease in hydrophilicity. This can be attributed to the presence of filled gaps and a dense film on the fibers’ surface after the HPMC-II treatment, as observed by scanning electron microscopy. Additionally, X-ray photoelectron spectroscopy analysis confirmed that the HPMC-II treatment introduced the highest content of hydrophobic groups on the fiber surface. The reduced hydrophilicity inhibited the excessive diffusion and penetration of gardenia blue ink, contributing to a distinct printing image and enhanced apparent color depth. Moreover, the printed silk demonstrated qualified color fastness to rubbing and soaping (exceeding grade four), a soft handle feeling, an ignorable strength loss (below 5%), and a favorable air/moisture penetrability. In general, the surface modification with the HPMC-II treatment has been proven as an effective strategy for upgrading the image quality of bio-based dye-printed silk. Full article
Show Figures

Figure 1

14 pages, 4338 KiB  
Article
Investigation of Using Calcined Coal Gangue as the Co-Blended Precursor in the Alkali-Activated Metakaolin
by Ye Pan, Zichen Lu, Liheng Zhang, Hui Zhang, Qin Zhang and Zhenping Sun
Materials 2024, 17(14), 3610; https://doi.org/10.3390/ma17143610 - 22 Jul 2024
Viewed by 685
Abstract
The feasibility and performance of using calcined coal gangue (CCG) to substitute metakaolin (MK) as the precursor to prepare alkali-activated materials (AAMs) were thoroughly evaluated by conducting combined experiments of flowability test, mechanical measurement, calorimetry and microstructure analysis, etc. It was found that [...] Read more.
The feasibility and performance of using calcined coal gangue (CCG) to substitute metakaolin (MK) as the precursor to prepare alkali-activated materials (AAMs) were thoroughly evaluated by conducting combined experiments of flowability test, mechanical measurement, calorimetry and microstructure analysis, etc. It was found that the increased substitution ratio of CCG to MK can increase the flowability of the prepared paste by up to 28.1% and decrease its viscosity by up to 55.8%. In addition, a prolonged setting time of up to 31.8% was found with the increased substitution amount of CCG to MK, which can be attributed to the low reactivity of CCG compared to that of MK. Lastly, even though the presence of CCG can lead to a decrease in the early compressive strength of the hardened paste, a highly recovered long-term mechanical property can be found due to the continuous reaction of CCG. All of these results prove the feasibility of using CCG as one co-blended precursor with MK to prepare alkali-activated materials. Full article
Show Figures

Figure 1

2 pages, 910 KiB  
Correction
Correction: Hong et al. Textile-Based Adsorption Sensor via Mixed Solvent Dyeing with Aggregation-Induced Emission Dyes. Materials 2024, 17, 1745
by Seong Gyun Hong, Byeong M. Oh, Jong H. Kim and Jea Uk Lee
Materials 2024, 17(14), 3609; https://doi.org/10.3390/ma17143609 - 22 Jul 2024
Viewed by 422
Abstract
In the original publication [...] Full article
Show Figures

Figure 1

18 pages, 6954 KiB  
Article
A Novel Wedge Anchor System for Double-Layer CFRP Plate Cables: Concept, Theoretical Analysis and FEA
by Zeping Zhang, Jie Bai, Qingrui Yue, Guowen Xu and Xiaogang Liu
Materials 2024, 17(14), 3608; https://doi.org/10.3390/ma17143608 - 22 Jul 2024
Viewed by 654
Abstract
This study introduces an innovative wedge anchor for double-layer carbon fiber reinforced polymer (CFRP) plate cable to address the current limitation of traditional wedge anchors. By employing the design concept of “secondary force transmission path”, the friction force for anchoring the CFRP plate [...] Read more.
This study introduces an innovative wedge anchor for double-layer carbon fiber reinforced polymer (CFRP) plate cable to address the current limitation of traditional wedge anchors. By employing the design concept of “secondary force transmission path”, the friction force for anchoring the CFRP plate is effectively transferred into the barrel through its contracting wedge, thus reducing the clamping pressure requirement of traditional wedge anchorage for anchoring thick or double-layer CFRP plates. Based on this conception, this study presents a theoretical analysis model for predicting the influence of parameter variations on the compressive stress of the CFRP plate, which can serve as a tool for rapid configuration preliminary design. Through finite element analysis, the internal stress distribution of the anchor is thoroughly investigated, and the theoretical analysis model for fast predicting compressive stress of CFRP plate is also validated. The results also indicate that the anchorage conception is valid and effective, providing sufficient anchorage of CFPR plates with an anchorage length of 100 mm. Full article
Show Figures

Figure 1

15 pages, 4125 KiB  
Article
Effects of Cr Addition on the Microstructure and Mechanical Properties of an Al–Si–Cu–Mg Alloy
by Fengshan Sun, Xin Wen, Shuaifei Sun, Yuanyuan Lu, Wenlong Xiao and Chaoli Ma
Materials 2024, 17(14), 3607; https://doi.org/10.3390/ma17143607 - 22 Jul 2024
Cited by 1 | Viewed by 765
Abstract
The effects of chromium (Cr) addition ranging 0.1–0.3 wt.% on the microstructure and mechanical properties of Al–7Si–4Cu–0.25Mg (wt.%) alloy have been investigated. The cast Cr-free alloy consisted of α-Al, eutectic Si, Q-Al5Mg8Cu2Si6 and θ-Al2Cu [...] Read more.
The effects of chromium (Cr) addition ranging 0.1–0.3 wt.% on the microstructure and mechanical properties of Al–7Si–4Cu–0.25Mg (wt.%) alloy have been investigated. The cast Cr-free alloy consisted of α-Al, eutectic Si, Q-Al5Mg8Cu2Si6 and θ-Al2Cu phases. Doping of Cr resulted in the appearance of a polyhedron-shaped α-Al13Cr4Si4 phase with a cubic structure. The Al13Cr4Si4 particles were found to embed with Al2Cu blocks and bring about size reduction for the Al2Cu blocks. The area fraction of Al13Cr4Si4 monotonously increased with Cr content. After T6 treatment, the Al2Cu blocks almost fully dissolved and transformed to θ’-Al2Cu precipitates in the Cr-containing alloys. TEM observation revealed relatively large-sized θ’ precipitates attached to Al13Cr4Si4 dispersoids. The Cr-containing alloys showed impressive mechanical properties, with the peak strength up to 452 MPa at room temperature. The ductility exhibited an increasing trend with Cr content, but the strength dropped dramatically when the Cr content reached 0.3 wt.%. It is suggested that the strength contribution from the Al13Cr4Si4 phase is limited, especially at an elevated temperature. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

21 pages, 3612 KiB  
Review
A Review of Fluoride Removal from Phosphorous Gypsum: A Quantitative Analysis via a Machine Learning Approach
by Huagui Jin, Yixiao Wang, Xuebin An, Shizhao Wang, Yunshan Wang, Gang Yang, Lufang Shi and Yong Sun
Materials 2024, 17(14), 3606; https://doi.org/10.3390/ma17143606 - 22 Jul 2024
Viewed by 1015
Abstract
This review comprehensively explores fluoride removal from phosphogypsum, focusing on its composition, fluorine-containing compounds, characterization methods, and defluorination techniques. It initially outlines the elemental composition of phosphogypsum prevalent in major production regions and infers the presence of fluorine compounds based on these constituents. [...] Read more.
This review comprehensively explores fluoride removal from phosphogypsum, focusing on its composition, fluorine-containing compounds, characterization methods, and defluorination techniques. It initially outlines the elemental composition of phosphogypsum prevalent in major production regions and infers the presence of fluorine compounds based on these constituents. The study highlights X-ray photoelectron spectroscopy (XPS) as a pivotal method for characterizing fluorine compounds, emphasizing its capability to determine precise binding energies essential for identifying various fluorine species. Additionally, the first-principle density functional theory (DFT) is employed to estimate binding energies of different fluorine-containing compounds. Significant correlations are observed between the total atomic energy of binary fluorides (e.g., of alkali metals, earth metals, and boron group metals) and XPS binding energies. However, for complex compounds like calcium fluorophosphate, correlations with the calculated average atomic total energy are less direct. The review categorizes defluorination methods applied to phosphogypsum as physical, chemical, thermal, and thermal-combined processes, respectively. It introduces neural network machine learning (ML) technology to quantitatively analyze and optimize reported defluorination strategies. Simulation results indicate potential optimizations based on quantitative analyses of process conditions reported in the literature. This review provides a systematic approach to understanding the phosphogypsum composition, fluorine speciation, analytical methodologies, and effective defluorination strategies. The attempts of adopting DFT simulation and quantitative analysis using ML in optimization underscore its potential and feasibility in advancing the industrial phosphogypsum defluorination process. Full article
Show Figures

Graphical abstract

14 pages, 6996 KiB  
Article
Investigating the Dewatering Efficiency of Sewage Sludge with Optimized Ratios of Electrolytic Manganese Residue Components
by Xuquan Huang, Jun Wang, Fei Xue, Xiaorong Zhao, Ziyao Shi, Qingyang Liang, Haojie Wang and Ziyu Zhao
Materials 2024, 17(14), 3605; https://doi.org/10.3390/ma17143605 - 22 Jul 2024
Viewed by 1049
Abstract
As an industrial waste residue, Electrolytic Manganese Residue (EMR) can greatly promote sludge dewatering and further particle-size optimization can significantly strengthen sludge dewaterability. In this study, the effects of ammonium sulfate, calcium sulphate dihydrate, and manganese carbonate in EMR on sludge dewatering performance [...] Read more.
As an industrial waste residue, Electrolytic Manganese Residue (EMR) can greatly promote sludge dewatering and further particle-size optimization can significantly strengthen sludge dewaterability. In this study, the effects of ammonium sulfate, calcium sulphate dihydrate, and manganese carbonate in EMR on sludge dewatering performance were investigated using the response surface optimization method. It was found that the optimized ratio of three components in EMR was 1.0:1.6:2.2 based on capillary suction time (CST), specific resistance of filtration (SRF), and zeta potential of dewatered sludge. The composition ratio of particle-size optimized EMR was modified based on the above optimization, resulting in a significant increase in sludge dewatering performance (CST and SRF reduced by 8.7% and 11.2%, respectively). Compared with those in original sludge, the content of bound extracellular polymeric substances in the conditioned sludge with optimized ratio was drastically reduced while that of soluble extracellular polymeric substances was slightly increased, which was in accordance with the decline of fluorescence intensity. These findings indicated the disintegration of extracellular polymeric substances, the enhancement of hydrophobicity, and dewatering properties of the sludge. In summary, optimized EMR can effectively intensify the dewaterability of sludge, providing a competitive solution for dewatering and further disposal of sludge. Full article
Show Figures

Figure 1

12 pages, 12345 KiB  
Article
Weight Factor as a Parameter for Optimal Part Orientation in the L-PBF Printing Process Using Numerical Simulation
by Ľuboš Kaščák, Ján Varga, Jana Bidulská, Róbert Bidulský and Diego Manfredi
Materials 2024, 17(14), 3604; https://doi.org/10.3390/ma17143604 - 22 Jul 2024
Cited by 1 | Viewed by 840
Abstract
The L-PBF process belongs to the most modern methods of manufacturing complex-shaped parts. It is used especially in the automotive, aviation industries, and in the consumer products industry as well. Numerical simulation in the powder sintering process is a means of optimizing time [...] Read more.
The L-PBF process belongs to the most modern methods of manufacturing complex-shaped parts. It is used especially in the automotive, aviation industries, and in the consumer products industry as well. Numerical simulation in the powder sintering process is a means of optimizing time efficiency, accuracy and predicting future errors. It is one of the means to optimize the L-PBF process, which makes it possible to investigate the influence of individual parameters on additive manufacturing. This research makes it possible to predict the correct orientation of a part based on selected criteria, which are assigned a weighting factor in the form of parameters with which the simulation software Simufact Additive can work. Based on these, three possible orientations of the part were analysed with respect to the area of the supporting material, the volume of the supporting material, the number of voxels, and the building risk. Finally, the results of a simulation and the results of the tensile test were compared. From the results of the static tensile test, as well as from the results of the numerical simulation, it was found that better characteristics were achieved for the orientation of part no. 1 compared to orientation of part No. 3. Full article
Show Figures

Figure 1

35 pages, 5894 KiB  
Review
Biochar from Co-Pyrolyzed Municipal Sewage Sludge (MSS): Part 1: Evaluating Types of Co-Substrates and Co-Pyrolysis Conditions
by Michael Biney and Mariusz Z. Gusiatin
Materials 2024, 17(14), 3603; https://doi.org/10.3390/ma17143603 - 21 Jul 2024
Cited by 1 | Viewed by 1850
Abstract
With the increasing production of municipal sewage sludge (MSS) worldwide, the development of efficient and sustainable strategies for its management is crucial. Pyrolysis of MSS offers several benefits, including volume reduction, pathogen elimination, and energy recovery through the production of biochar, syngas, and [...] Read more.
With the increasing production of municipal sewage sludge (MSS) worldwide, the development of efficient and sustainable strategies for its management is crucial. Pyrolysis of MSS offers several benefits, including volume reduction, pathogen elimination, and energy recovery through the production of biochar, syngas, and bio-oil. However, the process can be limited by the composition of the MSS, which can affect the quality of the biochar. Co-pyrolysis has emerged as a promising solution for the sustainable management of MSS, reducing the toxicity of biochar and improving its physical and chemical properties to expand its potential applications. This review discusses the status of MSS as a feedstock for biochar production. It describes the types and properties of various co-substrates grouped according to European biochar certification requirements, including those from forestry and wood processing, agriculture, food processing residues, recycling, anaerobic digestion, and other sources. In addition, the review addresses the optimization of co-pyrolysis conditions, including the type of furnace, mixing ratio of MSS and co-substrate, co-pyrolysis temperature, residence time, heating rate, type of inert gas, and flow rate. This overview shows the potential of different biomass types for the upgrading of MSS biochar and provides a basis for research into new co-substrates. This approach not only mitigates the environmental impact of MSS but also contributes to the wider goal of achieving a circular economy in MSS management. Full article
Show Figures

Figure 1

15 pages, 9040 KiB  
Article
Reliability Risk Mitigation in Advanced Packages by Aging-Induced Precipitation of Bi in Water-Quenched Sn–Ag–Cu–Bi Solder
by Vishnu Shukla, Omar Ahmed, Peng Su and Tengfei Jiang
Materials 2024, 17(14), 3602; https://doi.org/10.3390/ma17143602 - 21 Jul 2024
Viewed by 1036
Abstract
Bi-doped Sn–Ag–Cu (SAC) microelectronic solder is gaining attention for its utility as a material for solder joints that connect substrates to printed circuit boards (PCB) in future advanced packages, as Bi-doped SAC is reported to have a lower melting temperature, higher strength, higher [...] Read more.
Bi-doped Sn–Ag–Cu (SAC) microelectronic solder is gaining attention for its utility as a material for solder joints that connect substrates to printed circuit boards (PCB) in future advanced packages, as Bi-doped SAC is reported to have a lower melting temperature, higher strength, higher wettability on conducting pads, and lower intermetallic compound (IMC) formation at the solder-pad interface. As solder joints are subjected to aging during their service life, an investigation of aging-induced changes in the microstructure and mechanical properties of the solder alloy is needed before its wider acceptance in advanced packages. This study focuses on the effects of 1 to 3 wt.% Bi doping in an Sn–3.0Ag–0.5Cu (SAC305) solder alloy on aging-induced changes in hardness and creep resistance for samples prepared by high cooling rates (>5 °C/s). The specimens were aged at ambient and elevated temperatures for up to 90 days and subjected to quasistatic nanoindentation to determine hardness and nanoscale dynamic nanoindentation to determine creep behavior. The microstructural evolution was investigated with a scanning electron microscope in tandem with energy-dispersive spectroscopy to correlate with aging-induced property changes. The hardness and creep strength of the samples were found to increase as the Bi content increased. Moreover, the hardness and creep strength of the 0–1 wt.% Bi-doped SAC305 was significantly reduced with aging, while that of the 2–3 wt.% Bi-doped SAC305 increased with aging. The changes in these properties with aging were correlated to the interplay of multiple hardening and softening mechanisms. In particular, for 2–3 wt.% Bi, the enhanced performance was attributed to the potential formation of additional Ag3Sn IMCs with aging due to non-equilibrium solidification and the more uniform distribution of Bi precipitates. The observations that 2–3 wt.% Bi enhances the hardness and creep strength of the SAC305 alloy with isothermal aging to mitigate reliability risks is relevant for solder samples prepared using high cooling rates. Full article
Show Figures

Figure 1

20 pages, 11562 KiB  
Article
Effects of Fineness and Morphology of Quartz in Siliceous Limestone on the Calcination Process and Quality of Cement Clinker
by Donggen Nie, Wei Li, Lilan Xie, Min Deng, Hao Ding and Kaiwei Liu
Materials 2024, 17(14), 3601; https://doi.org/10.3390/ma17143601 - 21 Jul 2024
Viewed by 923
Abstract
With the increasing depletion of high-quality raw materials, siliceous limestone, sandstone and other hard-to-burn raw materials containing crystalline SiO2 are gradually being used to produce clinker. This study investigates the influence of the quartz content and particle size in siliceous limestone on [...] Read more.
With the increasing depletion of high-quality raw materials, siliceous limestone, sandstone and other hard-to-burn raw materials containing crystalline SiO2 are gradually being used to produce clinker. This study investigates the influence of the quartz content and particle size in siliceous limestone on the calcination process and the resultant quality of cement clinker. Two different siliceous limestones were grinded to different fineness, and calcinated with some other materials. The content of the clinkers was analyzed with the XRD–Rietveld method and the microstructure of the clinkers was observed with laser scanning confocal microscopy (LSCM) and field emission scanning electron microscopy (FESEM). Three key outcomes of this study provide new insights on the use of siliceous limestone in cement production, namely that (i) reducing the fineness values of siliceous limestone from 15% to 0% of residue on a 0.08 mm sieve decreases the quantity of these larger quartz particles, resulting in an increase in C3S content by up to 8% and an increase in 28d compressive strength by up to 4.4 Mpa, which is 62.30 Mpa; (ii) the morphology of quartz—either as chert nodules or single crystals—affects the microstructure of C2S clusters in clinker, finding that chert nodules result in clusters with more intermediate phases, whereas large single crystals lead to denser clusters; (iii) the sufficient fineness values of siliceous limestone SL1 and SL2 are 5% and 7% of residue on a 0.08 mm sieve, respectively, which can produce a clinker with a 28d compressive strength greater than 60 Mpa, indicating that for different kinds of quartz in siliceous limestone, there is an optimum grinding solution that can achieve a balance between clinker quality and energy consumption without having to grind siliceous limestone to very fine grades. Full article
(This article belongs to the Special Issue Reaction Mechanism and Properties of Cement-Based Materials)
Show Figures

Figure 1

23 pages, 8222 KiB  
Article
Analysis of Thermoelastic Contact of Gas-Lubricated Rough Sealing Faces
by Shaoxian Bai, Yangyang Chen and Jing Yang
Materials 2024, 17(14), 3600; https://doi.org/10.3390/ma17143600 - 21 Jul 2024
Viewed by 719
Abstract
Friction and wear are the main failure sources of face seals. When the surfaces of sealing rings exhibit greater roughness, the level of friction might increase and lead to sealing failure. Therefore, in this paper, based on the elastic contact hypothesis of rough [...] Read more.
Friction and wear are the main failure sources of face seals. When the surfaces of sealing rings exhibit greater roughness, the level of friction might increase and lead to sealing failure. Therefore, in this paper, based on the elastic contact hypothesis of rough and wavy surfaces and the influence of temperature on the elastic modulus of materials, a thermoelastic contact lubrication model of a gas-lubricated end seal is established. The novelty and advantage of this study is that it takes the effect of surface roughness into consideration during thermoelastic analysis of gas-lubricated seals. The film pressure, temperature, contact force and deformation of a gas spiral groove-faced seal are numerically determined. The influence of surface roughness on the contact distribution, deformation and temperature of the end-face seal at different speeds and pressures is analyzed. The film thickness increases as the rotational speed increases from 1 rpm to 2000 rpm, while the contact pressure sharply decreases from 0.25 kPa to 0. The analysis shows that the roughness contact mainly happens on the inner side of the rings due to convergent distortion of the seal faces, which easily causes partial wear of the seal faces. Moreover, it can also be found that the spiral grooves on the sealing surface can produce obvious hydrodynamic pressure effect due to the function of shear speed when the speed increases to 2000 rpm, while the film temperature increases from 293.3 K to about 306 K. The greater surface roughness results in a larger temperature rise under low-rotational-speed and lower-seal-pressure conditions, which further increases the risk of severe wear or even failure of the seal faces. Full article
Show Figures

Figure 1

14 pages, 5493 KiB  
Article
Study of Heat Flow at Substrate during Sputtering of Copper–Titanium Sandwich Target
by Viktor I. Shapovalov and Daniil S. Sharkovskii
Materials 2024, 17(14), 3599; https://doi.org/10.3390/ma17143599 - 21 Jul 2024
Viewed by 621
Abstract
The purpose of this work is to study the kinetics of the heat flow heating the substrate, which is generated by a two-layer sandwich magnetron target when sputtered in argon. Its novelty resides in the application of the COMSOL Multiphysics to study the [...] Read more.
The purpose of this work is to study the kinetics of the heat flow heating the substrate, which is generated by a two-layer sandwich magnetron target when sputtered in argon. Its novelty resides in the application of the COMSOL Multiphysics to study the kinetics of thermal processes during sputtering of a target of the new type. The analysis was performed for a sandwich target with internal copper and external titanium plates when the discharge power varied in the range of 400–1200 W. The heating of the external target plate is described by a two-dimensional homogeneous Fourier equation. The solution to the equation reveals how the kinetics of the external plate’s surface temperature distribution depends on the discharge power. To study the heat flow heating the substrate, the external plate is presented in the form of an additive set of small-sized surface heat sources. Previously unknown features of the thermal process are established. It is shown that numerical modeling adequately describes the experimental results. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

14 pages, 4348 KiB  
Article
Inline Hot Rolling of Al-5%Mg Strip Cast Using an Unequal Diameter Twin-Roll Caster
by Toshio Haga and Masataka Furukawa
Materials 2024, 17(14), 3598; https://doi.org/10.3390/ma17143598 - 21 Jul 2024
Viewed by 623
Abstract
One advantage of twin-roll casting for aluminum alloys is that hot rolling can be omitted, thus shortening the process. The effect of inline hot rolling on the anisotropy of the mechanical properties, especially the elongation, of the roll-cast strip has not been investigated. [...] Read more.
One advantage of twin-roll casting for aluminum alloys is that hot rolling can be omitted, thus shortening the process. The effect of inline hot rolling on the anisotropy of the mechanical properties, especially the elongation, of the roll-cast strip has not been investigated. In a high-speed twin-roll caster, inline hot rolling forms the metal shape before the temperature of the cast strip decreases below the temperature needed for hot rolling. In this study, inline hot rolling of Al-5%Mg strips cast using an unequal diameter twin-roll caster was performed to validate the technique and evaluate its ability to reduce surface cracking and improve the elongation anisotropy. A rolling speed of 30 m/min was used, and the effects of temperature and thickness reduction during inline hot rolling on the surface and mechanical properties were investigated. Inline hot rolling was found to effectively reduce the formation of surface cracks and the anisotropy of the mechanical properties. Full article
Show Figures

Figure 1

21 pages, 2501 KiB  
Review
Ex Situ Stabilization/Solidification Approaches of Marine Sediments Using Green Cement Admixtures
by Pravendra Yadav, Andrea Petrella, Francesco Todaro, Sabino De Gisi, Claudia Vitone, Rossella Petti and Michele Notarnicola
Materials 2024, 17(14), 3597; https://doi.org/10.3390/ma17143597 - 21 Jul 2024
Cited by 1 | Viewed by 1036
Abstract
The routine dredging of waterways produces huge volumes of sediments. Handling contaminated dredged sediments poses significant and diverse challenges around the world. In recent years, novel and sustainable ex situ remediation technologies for contaminated sediments have been developed and applied. This review article [...] Read more.
The routine dredging of waterways produces huge volumes of sediments. Handling contaminated dredged sediments poses significant and diverse challenges around the world. In recent years, novel and sustainable ex situ remediation technologies for contaminated sediments have been developed and applied. This review article focuses on cement-based binders in stabilizing contaminants through the stabilization/solidification (S/S) technique and the utilization of contaminated sediments as a resource. Through S/S techniques, heavy metals can be solidified and stabilized in dense and durable solid matrices, reducing their permeability and restricting their release into the environment. Industrial by-products like red mud (RM), soda residue (SR), pulverized fly ash (PFA), and alkaline granulated blast furnace slag (GGBS) can immobilize heavy metal ions such as lead, zinc, cadmium, copper, and chromium by precipitation. However, in a strong alkali environment, certain heavy metal ions might dissolve again. To address this, immobilization in low pH media can be achieved using materials like GGBS, metakaolin (MK), and incinerated sewage sludge ash (ISSA). Additionally, heavy metals can be also immobilized through the formation of silicate gels and ettringites during pozzolanic reactions by mechanisms such as adsorption, ion exchanges, and encapsulation. It is foreseeable that, in the future, the scientific community will increasingly turn towards multidisciplinary studies on novel materials, also after an evaluation of the effects on long-term heavy metal stabilization. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

31 pages, 12179 KiB  
Article
Thermo-Mechanical and Thermo-Electric Properties of a Carbon-Based Epoxy Resin: An Experimental, Statistical, and Numerical Investigation
by Giovanni Spinelli, Rosella Guarini, Liberata Guadagno, Luigi Vertuccio and Vittorio Romano
Materials 2024, 17(14), 3596; https://doi.org/10.3390/ma17143596 - 21 Jul 2024
Viewed by 949
Abstract
Due to their remarkable intrinsic physical properties, carbon nanotubes (CNTs) can enhance mechanical properties and confer electrical and thermal conductivity to polymers currently being investigated for use in advanced applications based on thermal management. An epoxy resin filled with varying concentrations of CNTs [...] Read more.
Due to their remarkable intrinsic physical properties, carbon nanotubes (CNTs) can enhance mechanical properties and confer electrical and thermal conductivity to polymers currently being investigated for use in advanced applications based on thermal management. An epoxy resin filled with varying concentrations of CNTs (up to 3 wt%) was produced and experimentally characterized. The electrical percolation curve identified the following two critical filler concentrations: 0.5 wt%, which is near the electrical percolation threshold (EPT) and suitable for exploring mechanical and piezoresistive properties, and 3 wt% for investigating thermo-electric properties due to the Joule effect with applied voltages ranging from 70 V to 200 V. Near the electrical percolation threshold (EPT), the CNT concentration in epoxy composites forms a sparse, sensitive network ideal for deformation sensing due to significant changes in electrical resistance under strain. Above the EPT, a denser CNT network enhances electrical and thermal conductivity, making it suitable for Joule heating applications. Numerical models were developed using multiphysics simulation software. Once the models have been validated with experimental data, as a perfect agreement is found between numerical and experimental results, a simulation study is performed to investigate additional physical properties of the composites. Furthermore, a statistical approach based on the design of experiments (DoE) was employed to examine the influence of certain thermal parameters on the final performance of the materials. The purpose of this research is to promote the use of contemporary statistical and computational techniques alongside experimental methods to enhance understanding of materials science. New materials can be identified through these integrated approaches, or existing ones can be more thoroughly examined. Full article
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop