Experimental Testing, Manufacturing and Numerical Modeling of Composite and Sandwich Structures
- Multi-Material and Hybrid Structures: Combining different materials (composites with metals, ceramics, and polymers) to achieve superior performance in, for example, enhanced mechanical properties, tailored thermal and electrical conductivity, and improved damage tolerance [34].
- Advanced Manufacturing Techniques: Additive manufacturing (3D printing), automated layup methods (such as automated fiber placement and tape laying), and innovative curing techniques to enhance production efficiency and reduce costs [35].
- Durability and Environmental Resistance: Developing coatings, surface treatments, and materials that resist degradation from environmental factors (ultraviolet or UV exposure, moisture, and chemicals) and promote an extended service life [36].
- Damage Detection and Structural Health Monitoring: Integrating embedded sensors, data analytics, and machine learning algorithms to enable real-time monitoring and predictive maintenance of composite structures [37].
- Simulation and Modeling: Developing multi-scale models that capture the complex behavior of composites, from microstructure to macroscopic performance, and validating these models with experimental data [38].
- Functional and Smart Materials: Integration of functional materials (such as shape memory alloys, piezoelectric materials, and sensors) into sandwich structures to exhibit adaptive, self-healing, or sensing capabilities [39].
- Sustainability and Recycling: Developing eco-friendly manufacturing processes, bio-based resins, and recyclable composite and sandwich structures. Improving recycling methods to recover and reuse materials effectively [40].
Conflicts of Interest
References
- Ozturk, F.; Cobanoglu, M.; Ece, R.E. Recent advancements in thermoplastic composite materials in aerospace industry. J. Thermoplast. Compos. Mater. 2023. [Google Scholar] [CrossRef]
- Rajak, D.K.; Pagar, D.D.; Kumar, R.; Pruncu, C.I. Recent progress of reinforcement materials: A comprehensive overview of composite materials. J. Mater. Res. Technol. 2019, 8, 6354–6374. [Google Scholar] [CrossRef]
- Pervaiz, S.; Qureshi, T.A.; Kashwani, G.; Kannan, S. 3D printing of fiber-reinforced plastic composites using fused deposition modeling: A status review. Materials 2021, 14, 4520. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Huang, R. 3D printing of natural fiber and composites: A state-of-the-art review. Mater. Des. 2022, 222, 111065. [Google Scholar] [CrossRef]
- Hassan, T.; Salam, A.; Khan, A.; Khan, S.U.; Khanzada, H.; Wasim, M.; Khan, M.Q.; Kim, I.S. Functional nanocomposites and their potential applications: A review. J. Polym. Res. 2021, 28, 36. [Google Scholar] [CrossRef]
- Maiti, S.; Islam, M.R.; Uddin, M.A.; Afroj, S.; Eichhorn, S.J.; Karim, N. Sustainable fiber-reinforced composites: A Review. Adv. Sustain. Syst. 2022, 6, 2200258. [Google Scholar] [CrossRef]
- Guan, X.; Chen, H.; Xia, H.; Fu, Y.; Qiu, Y.; Ni, Q.-Q. Multifunctional composite nanofibers with shape memory and piezoelectric properties for energy harvesting. J. Intel. Mat. Syst. Str. 2020, 31, 956–966. [Google Scholar] [CrossRef]
- Sonia, P.; Srinivas, R.; Kansal, L.; Abdul-Zahra, D.S.; Reddy, U.; Kumari, V. Bioinspired Composites a Review: Lessons from Nature for Materials Design and Performance. In Proceedings of the E3S Web of Conferences, Ordos, China, 22–23 June 2024; p. 01024. [Google Scholar]
- Ghatage, P.S.; Kar, V.R.; Sudhagar, P.E. On the numerical modelling and analysis of multi-directional functionally graded composite structures: A review. Compos. Struct. 2020, 236, 111837. [Google Scholar] [CrossRef]
- Ma, W.; Elkin, R. Sandwich Structural Composites: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2022. [Google Scholar]
- Al-Khazraji, M.S.; Bakhy, S.; Jweeg, M. Composite sandwich structures: Review of manufacturing techniques. J. Eng. Des. Technol. 2023. [Google Scholar] [CrossRef]
- Peng, C.; Fox, K.; Qian, M.; Nguyen-Xuan, H.; Tran, P. 3D printed sandwich beams with bioinspired cores: Mechanical performance and modelling. Thin-Walled Struct. 2021, 161, 107471. [Google Scholar] [CrossRef]
- Essassi, K.; Rebiere, J.-L.; Mahi, A.E.; Souf, M.A.B.; Bouguecha, A.; Haddar, M. Experimental and numerical analysis of the dynamic behavior of a bio-based sandwich with an auxetic core. J. Sandw. Struct. Mater. 2021, 23, 1058–1077. [Google Scholar] [CrossRef]
- Wang, L.; Gao, B.; Sun, Y.; Zhang, Y.; Hu, L. Effect of High Current Pulsed Electron Beam (HCPEB) on the Organization and Wear Resistance of CeO2-Modified Al-20SiC Composites. Materials 2023, 16, 4656. [Google Scholar] [CrossRef]
- Baimova, J.A.; Shcherbinin, S.A. Strength and Deformation Behavior of Graphene Aerogel of Different Morphologies. Materials 2023, 16, 7388. [Google Scholar] [CrossRef] [PubMed]
- Choi, J.; Andrian, Y.O.; Lee, H.; Lee, H.; Kim, N. Fatigue Life Prediction for Injection-Molded Carbon Fiber-Reinforced Polyamide-6 Considering Anisotropy and Temperature Effects. Materials 2024, 17, 315. [Google Scholar] [CrossRef]
- Sanai, K.; Nakasaki, S.; Hashimoto, M.; Macadre, A.; Goda, K. Fracture Behavior of a Unidirectional Carbon Fiber-Reinforced Plastic under Biaxial Tensile Loads. Materials 2024, 17, 1387. [Google Scholar] [CrossRef]
- Li, J.; Gao, B.; Shi, Z.; Chen, J.; Fu, H.; Liu, Z. Graphene/Heterojunction Composite Prepared by Carbon Thermal Reduction as a Sulfur Host for Lithium-Sulfur Batteries. Materials 2023, 16, 4956. [Google Scholar] [CrossRef]
- Ntaflos, A.; Foteinidis, G.; Liangou, T.; Bilalis, E.; Anyfantis, K.; Tsouvalis, N.; Tyriakidi, T.; Tyriakidis, K.; Tyriakidis, N.; Paipetis, A.S. Enhancing Epoxy Composite Performance with Carbon Nanofillers: A Solution for Moisture Resistance and Extended Durability in Wind Turbine Blade Structures. Materials 2024, 17, 524. [Google Scholar] [CrossRef] [PubMed]
- Ciecieląg, K. Machinability Measurements in Milling and Recurrence Analysis of Thin-Walled Elements Made of Polymer Composites. Materials 2023, 16, 4825. [Google Scholar] [CrossRef]
- Knápek, T.; Dvořáčková, Š.; Váňa, M. The Effect of Clearance Angle on Tool Life, Cutting Forces, Surface Roughness, and Delamination during Carbon-Fiber-Reinforced Plastic Milling. Materials 2023, 16, 5002. [Google Scholar] [CrossRef]
- Matula, G.; Tomiczek, B. Manufacturing of Corrosion-Resistant Surface Layers by Coating Non-Alloy Steels with a Polymer-Powder Slurry and Sintering. Materials 2023, 16, 5210. [Google Scholar] [CrossRef]
- Yelemessov, K.; Sabirova, L.B.; Martyushev, N.V.; Malozyomov, B.V.; Bakhmagambetova, G.B.; Atanova, O.V. Modeling and Model Verification of the Stress-Strain State of Reinforced Polymer Concrete. Materials 2023, 16, 3494. [Google Scholar] [CrossRef]
- Bhagatji, J.D.; Kravchenko, O.G.; Asundi, S. Mechanics of Pure Bending and Eccentric Buckling in High-Strain Composite Structures. Materials 2024, 17, 796. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.W.; Markoff, E.K.; DeFisher, S. Unified Failure Criterion Based on Stress and Stress Gradient Conditions. Materials 2024, 17, 569. [Google Scholar] [CrossRef]
- Ferreira, L.M.; Coelho, C.A.C.P.; Reis, P.N.B. Numerical Simulations of the Low-Velocity Impact Response of Semicylindrical Woven Composite Shells. Materials 2023, 16, 3442. [Google Scholar] [CrossRef] [PubMed]
- Kraisornkachit, P.; Naito, M.; Kang, C.; Sato, C. Multi-Objective Optimization of Adhesive Joint Strength and Elastic Modulus of Adhesive Epoxy with Active Learning. Materials 2024, 17, 2866. [Google Scholar] [CrossRef]
- Takamura, M.; Isozaki, M.; Takeda, S.; Oya, Y.; Koyanagi, J. Evaluation of True Bonding Strength for Adhesive Bonded Carbon Fiber-Reinforced Plastics. Materials 2024, 17, 394. [Google Scholar] [CrossRef]
- Khademi, M.; Pulipati, D.P.; Jack, D.A. Nondestructive Inspection and Quantification of Select Interface Defects in Honeycomb Sandwich Panels. Materials 2024, 17, 2772. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Yao, D.; Zhang, J.; Xiao, X.; Jin, X. Effect of the Laying Order of Core Layer Materials on the Sound-Insulation Performance of High-Speed Train Carbody. Materials 2023, 16, 3862. [Google Scholar] [CrossRef]
- Grzybek, D. Experimental Analysis of the Influence of Carrier Layer Material on the Performance of the Control System of a Cantilever-Type Piezoelectric Actuator. Materials 2024, 17, 96. [Google Scholar] [CrossRef]
- Barbinta-Patrascu, M.-E.; Nichita, C.; Bita, B.; Antohe, S. Biocomposite Materials Derived from Andropogon halepensis: Eco-Design and Biophysical Evaluation. Materials 2024, 17, 1225. [Google Scholar] [CrossRef]
- Grząbka-Zasadzińska, A.; Woźniak, M.; Kaszubowska-Rzepka, A.; Baranowska, M.; Sip, A.; Ratajczak, I.; Borysiak, S. Enhancing Sustainability and Antifungal Properties of Biodegradable Composites: Caffeine-Treated Wood as a Filler for Polylactide. Materials 2024, 17, 698. [Google Scholar] [CrossRef] [PubMed]
- Ding, Z.; Zou, Z.; Zhang, L.; Li, X.; Zhang, Y. Multi-scale topological design of asymmetric porous sandwich structures with unidentical face sheets and composite core. Comput. Methods Appl. Mech. Eng. 2024, 422, 116839. [Google Scholar] [CrossRef]
- Parveez, B. Rapid prototyping of core materials in aircraft sandwich structures. In Modern Manufacturing Processes for Aircraft Materials; Elsevier: Amsterdam, The Netherlands, 2024; pp. 63–87. [Google Scholar]
- Duarte, C.; de Queiroz, H.; Neto, J.; Cavalcanti, D.; Banea, M. Evaluation of durability of 3D-printed multi-material parts for potential applications in structures exposed to marine environments. Procedia Struct. Integr. 2024, 53, 299–308. [Google Scholar] [CrossRef]
- Khanahmadi, M.; Mirzaei, B.; Amiri, G.G.; Gholhaki, M.; Rezaifar, O. Vibration-based damage localization in 3D sandwich panels using an irregularity detection index (IDI) based on signal processing. Measurement 2024, 224, 113902. [Google Scholar] [CrossRef]
- Kheyabani, A.; Ali, H.Q.; Kefal, A.; Yildiz, M. Coupling of isogeometric higher-order RZT and parametric HFGMC frameworks for multiscale modeling of sandwich laminates: Theory and experimental validation. Aerosp. Sci. Technol. 2024, 146, 108944. [Google Scholar] [CrossRef]
- Ghalayaniesfahani, A.; Oostenbrink, B.; van Kasteren, H.; Gibson, I.; Mehrpouya, M. 4D Printing of Biobased Shape Memory Sandwich Structures. Polymer 2024, 307, 127252. [Google Scholar] [CrossRef]
- Lv, Q.; Zhu, X.; Zhou, T.; Tian, L.; Liu, Y.; Wang, Y.; Zhang, C. Multifunctional and recyclable aerogel/fiber building insulation composites with sandwich structure. Constr. Build. Mater. 2024, 423, 135902. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Campilho, R.D.S.G. Experimental Testing, Manufacturing and Numerical Modeling of Composite and Sandwich Structures. Materials 2024, 17, 3468. https://doi.org/10.3390/ma17143468
Campilho RDSG. Experimental Testing, Manufacturing and Numerical Modeling of Composite and Sandwich Structures. Materials. 2024; 17(14):3468. https://doi.org/10.3390/ma17143468
Chicago/Turabian StyleCampilho, Raul Duarte Salgueiral Gomes. 2024. "Experimental Testing, Manufacturing and Numerical Modeling of Composite and Sandwich Structures" Materials 17, no. 14: 3468. https://doi.org/10.3390/ma17143468
APA StyleCampilho, R. D. S. G. (2024). Experimental Testing, Manufacturing and Numerical Modeling of Composite and Sandwich Structures. Materials, 17(14), 3468. https://doi.org/10.3390/ma17143468