Kinetic Study and Catalytic Activity of Cr3+ Catalyst Supported on Calcium Silicate Hydrates for VOC Oxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Synthesis
- Calcium carbonate (“ACS reagent”, CAS 471-34-1). Prior to synthesis, calcium carbonate was ground for 5 min in a vibrating cup mill (Pulverisette 9, Fritsch, Pittsboro, NC, USA) (speed: 700 rpm) and calcined at 900 °C for 2 h. The quantity of free CaO was 99.88 mass %.
- Amorphous silicon dioxide (“Eurochemicals”, Vilnius, Lithuania) was ground for 2.5 min in a vibrating cup mill (Pulverisette 9, Fritsch, Pittsboro, NC, USA) (speed: 900 rpm). Surface area Sa = 1291 m2/kg, loss of ignition = 15.26%, concentration of SiO2 = 84.24%.
- Chromium nitrate solution prepared with concentrations of 2.5, 5.0, and 10.0 g Cr3+/dm3 by dissolving Cr(NO3)3·9H2O granules (“Penta”, Katovice, Czech Republic, purity = 99%) in distilled water.
2.2. Methods
3. Results and Discussion
3.1. Hydrothermal Synthesis of Calcium Silicate Hydrates with Intercalated Cr3+ Ions
3.2. Thermal Stability of Calcium Silicate Hydrates with Intercalated 50 mg/g of Cr3+ Ions
3.3. Catalytic Activity of Calcium Silicate Hydrate with Intercalated Cr3+ Ion
3.4. Kinetics of Propyl Acetate Complete Oxidation Reaction on the Surface of Calcium Silicate Hydrate with Intercalated Cr3+ Ions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khushboo, S.; Boken, G.; Mehta, S. Genetic Modification and Genome Engineering of Plants for Adverse Environmental Pollution. In Plants and Their Interaction to Environmental Pollution; Husen, A., Ed.; Elsevier: Amsterdam, The Netherlands, 2023; pp. 429–439. [Google Scholar]
- Kumar, S.A.; Sharma, M.; Sharma, K.A.; Sharma, M.; Sharma, M. Mapping the Impact of Environmental Pollutants on Human Health and Environment: A Systematic Review and Meta-Analysis. J. Geochem. Explor. 2023, 255, 107325. [Google Scholar]
- Maung, T.Z.; Bishop, J.E.; Holt, E.; Turner, A.M.; Pfrang, C. Indoor Air Pollution and the Health of Vulnerable Groups: A Systematic Review Focused on Particulate Matter (PM), Volatile Organic Compounds (VOCs) and Their Effects on Children and People with Pre-Existing Lung Disease. Int. J. Environ. Res. Public Health 2022, 19, 8752. [Google Scholar] [CrossRef]
- David, E.; Niculescu, V.C. Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials. Int. J. Environ. Res. Public Health 2021, 18, 13147. [Google Scholar] [CrossRef]
- Anand, S.S.; Philip, B.K.; Mehendale, H.M. Volatile Organic Compounds. In Encyclopedia of Toxicology; Wexler, P., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 967–970. [Google Scholar]
- Baskaran, D.; Dhamodharan, D.; Behera, S.U.; Byun, H.S. A Comprehensive Review and Perspective Research in Technology Integration for the Treatment of Gaseous Volatile Organic Compounds. Environ. Res. 2024, 251, 118472. [Google Scholar] [CrossRef]
- Li, X.; Zhang, L.; Yang, Z.; Wang, P.; Yan, Y.; Ran, J. Adsorption Materials for Volatile Organic Compounds (VOCs) and the Key Factors for VOCs Adsorption Process: A Review. Sep. Purif. Technol. 2020, 235, 116213. [Google Scholar] [CrossRef]
- Makoś-Chełstowska, P. VOCs Absorption from Gas Streams Using Deep Eutectic Solvents—A Review. J. Hazard. Mater. 2023, 448, 130957. [Google Scholar] [CrossRef]
- Xu, H.; Xi, X.; Xu, X.; Guo, J.; Chen, L.; Ji, W.; Wang, J. Development of a Volatile Organic Compounds Cryogenic Condensation Recovery System Cooled by Liquid Nitrogen. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1240, 012098. [Google Scholar] [CrossRef]
- Shen, B.; Zhao, S.; Yang, X.; Carta, M.; Zhou, H.; Jin, W. Relation between Permeate Pressure and Operational Parameters in VOC/Nitrogen Separation by a PDMS Composite Membrane. Sep. Purif. Technol. 2022, 280, 119974. [Google Scholar] [CrossRef]
- Papaefthimiou, P.; Ioannides, T.; Verykios, X.E. Catalytic Incineration of Volatile Organic Compounds Present in Industrial Waste Streams. Appl. Therm. Eng. 1998, 18, 1005–1012. [Google Scholar] [CrossRef]
- Prlj, A.; Ibele, M.L.; Marsili, E.; Curchod, B.F.E. On the Theoretical Determination of Photolysis Properties for Atmospheric Volatile Organic Compounds. J. Phys. Chem. Lett. 2020, 11, 5418–5425. [Google Scholar] [CrossRef] [PubMed]
- Everaert, K.; Baeyens, J. Catalytic Combustion of Volatile Organic Compounds. J. Hazard. Mater. 2004, 109, 113–139. [Google Scholar] [CrossRef]
- Arias, A.N.; Mello, R.; Lobato, J.; Motheo, J.A.; Rodrigo, M.A. Electrolytic Removal of Volatile Organic Compounds: Keys to Understand the Process. J. Electroanal. Chem. 2022, 912, 116259. [Google Scholar] [CrossRef]
- Xin, Y.; Nagata, T.; Kato, K.; Shirai, T. Microwave-Assisted Synthesis of Pt Nanoparticles via Liquid-Phase Polyol Reaction for Catalytic Volatile Organic Compound Elimination. ACS Appl. Nano Mater. 2022, 5, 4305–4315. [Google Scholar] [CrossRef]
- Zuo, G.M.; Cheng, Z.X.; Chen, H.; Li, G.W.; Miao, T. Study on Photocatalytic Degradation of Several Volatile Organic Compounds. J. Hazard. Mater. 2006, 128, 158–163. [Google Scholar] [CrossRef]
- Li, T.; Li, H.; Li, C. A Review and Perspective of Recent Research in Biological Treatment Applied in Removal of Chlorinated Volatile Organic Compounds from Waste Air. Chemosphere 2020, 250, 126338. [Google Scholar] [CrossRef]
- Huang, H.; Xu, Y.; Feng, Q.; Leung, D.Y.C. Low Temperature Catalytic Oxidation of Volatile Organic Compounds: A Review. Catal. Sci. Technol. 2015, 5, 2649–2669. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic Oxidation of Volatile Organic Compounds (VOCs)—A Review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Kim, H.S.; Kim, H.J.; Kim, J.H.; Kim, J.H.; Kang, S.H.; Ryu, J.H.; Park, N.K.; Yun, D.S.; Bae, J.W. Noble-Metal-Based Catalytic Oxidation Technology Trends for Volatile Organic Compound (VOC) Removal. Catalysts 2022, 12, 63. [Google Scholar] [CrossRef]
- Liu, M.; Mao, J.; Zhang, Z.; Li, L.; Long, T.; Chao, W. Current Supply Status, Demand Trends and Security Measures of Chromium Resources in China. Green Smart Min. Eng. 2024, 1, 53–57. [Google Scholar] [CrossRef]
- Liu, Z.; He, X.; Cheng, R.; Eisen, M.S.; Terano, M.; Scott, S.L.; Liu, B. Chromium Catalysts for Ethylene Polymerization and Oligomerization. In Advances in Chemical Engineering; Marin, G.B., Ed.; Elsevier: Amsterdam, The Netherlands, 2014; Volume 44, pp. 127–191. [Google Scholar]
- Agapie, T. Selective Ethylene Oligomerization: Recent Advances in Chromium Catalysis and Mechanistic Investigations. Coord. Chem. Rev. 2011, 255, 861–880. [Google Scholar] [CrossRef]
- McDaniel, M.P. A Review of the Phillips Supported Chromium Catalyst and Its Commercial Use for Ethylene Polymerization. In Advances in Catalysis; Gates, B.C., Knözinger, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2010; Volume 53, pp. 123–606. [Google Scholar]
- Baltakys, K.; Eisinas, A.; Siauciunas, R. The Effect of Gyrolite Substituted with Cadmium Ions on the Hydration Kinetics of OPC at Early Stages. Adv. Cem. Res. 2014, 26, 361–370. [Google Scholar] [CrossRef]
- Marafi, M.; Stanislaus, A. Spent Catalyst Waste Management: A Review: Part I—Developments in Hydroprocessing Catalyst Waste Reduction and Use. Resour. Conserv. Recycl. 2008, 52, 859–873. [Google Scholar] [CrossRef]
- Šiaučiunos, R.; Baltakys, K. Kalcio Hidrosilikatai: Filosilikatų Grupės, Junginių Sintezė, Savybės ir Naudojimas; Technologija: Kaunas, Lithuania, 2010; pp. 5–20. [Google Scholar]
- Chen, J.J.; Thomas, J.J.; Taylor, H.F.W.; Jennings, H.M. Solubility and Structure of Calcium Silicate Hydrate. Cem. Concr. Res. 2004, 34, 1499–1519. [Google Scholar] [CrossRef]
- Niuniavaite, D.; Baltakys, K.; Dambrauskas, T.; Eisinas, A.; Rubinaite, D.; Jaskunas, A. Microstructure, Thermal Stability, and Catalytic Activity of Compounds Formed in CaO-SiO2-Cr(NO3)3-H2O System. Nanomaterials 2020, 10, 1299. [Google Scholar] [CrossRef]
- Shao, N.; Li, S.; Yan, F.; Su, Y.; Liu, F.; Zhang, Z. An All-in-One Strategy for the Adsorption of Heavy Metal Ions and Photodegradation of Organic Pollutants Using Steel Slag-Derived Calcium Silicate Hydrate. J. Hazard. Mater. 2020, 382, 121120. [Google Scholar] [CrossRef] [PubMed]
- Dey, S.; Dhal, G.C.; Mohan, D.; Prasad, R. Kinetics of Catalytic Oxidation of Carbon Monoxide over CuMnAgOx Catalyst. Mater. Discov. 2017, 8, 18–25. [Google Scholar] [CrossRef]
- Ogur, E.; Botti, R.; Bortolotti, M.; Colombo, P.; Vakifahmetoglu, C. Synthesis and Additive Manufacturing of Calcium Silicate Hydrate Scaffolds. J. Mater. Res. Technol. 2021, 11, 1142–1151. [Google Scholar] [CrossRef]
- Omotoso, O.E.; Ivey, D.G.; Mikula, R. Containment Mechanism of Trivalent Chromium in Tricalcium Silicate. J. Hazard. Mater. 1998, 60, 1–28. [Google Scholar] [CrossRef]
- Gedeike, I.; Baltakys, K.; Eisinas, A. Thermal Stability of Synthetic High Basicity Calcium Silicate Hydrates Substituted with Cr3+ Ions. Mater. Charact. 2022, 193, 112231. [Google Scholar] [CrossRef]
- Baltakys, K.; Dambrauskas, T. Solid Waste. Application of AlF3 Production Waste to Gyrolite Synthesis. In Synthetic Gyrolite: A Dual Solution for Wastewater Treatment and Portland Cement; Springer Nature: Cham, Switzerland, 2024; pp. 79–137. [Google Scholar]
- Garbev, K.; Gasharova, B.; Stumm, A.; Black, L.; Mathis, Y.L.; Stemmermann, P. Phase transition of gyrolite into truscottite upon thermal treatment as studied at the ANKA infrared and XRD beamlines. Mineral. Tech. Krist. 2004, 21, 118. [Google Scholar]
- Zhao, Z.; Wei, J.; Li, F.; Qu, X.; Shi, L.; Zhang, H.; Yu, Q. Synthesis, Characterization and Hexavalent Chromium Adsorption Characteristics of Aluminum- and Sucrose-Incorporated Tobermorite. Sorpt. Mater. Environ. Purif. 2017, 10, 597. [Google Scholar] [CrossRef]
- Wang, J.B.; Chou, M.S. Kinetics of Catalytic Oxidation of Benzene, n-Hexane, and Emission Gas from a Refinery Oil/Water Separator over a Chromium Oxide Catalyst. J. Air Waste Manag. Assoc. 2000, 50, 227–233. [Google Scholar] [CrossRef]
- Oliveira, L.C.A.; Lago, R.M.; Fabris, J.D.; Sapag, K. Catalytic Oxidation of Aromatic VOCs with Cr or Pd-Impregnated Al-Pillared Bentonite: Byproduct Formation and Deactivation Studies. Appl. Clay Sci. 2008, 39, 218–222. [Google Scholar] [CrossRef]
- Assebban, M.; Tian, Z.Y.; Kasmi, A.; Bahlawane, N.; Harti, S.; Chafik, T. Catalytic Complete Oxidation of Acetylene and Propene over Clay versus Cordierite Honeycomb Monoliths without and with Chemical Vapor Deposited Cobalt Oxide. Chem. Eng. J. 2015, 262, 1252–1259. [Google Scholar] [CrossRef]
- Yang, X.; Yu, X.; Lin, M.; Ma, X.; Ge, M. Enhancement Effect of Acid Treatment on Mn2O3 Catalyst for Toluene Oxidation. Catal. Today 2019, 327, 254–261. [Google Scholar] [CrossRef]
- Gatica, J.M.; Castiglioni, J.; Santos, C.; Yeste, M.P.; Cifredo, G.; Torres, M.; Vidal, H. Use of Pillared Clays in the Preparation of Washcoated Clay Honeycomb Monoliths as Support of Manganese Catalysts for the Total Oxidation of VOCs. Catal. Today 2017, 296, 84–94. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, M.; Wei, Z.; Xin, Q.; Ying, P.; Li, C. Catalytic Oxidation of Chlorobenzene on Supported Manganese Oxide Catalysts. Appl. Catal. B Environ. 2001, 29, 61–67. [Google Scholar] [CrossRef]
- Carriazo, J.G.; Centeno, M.A.; Odriozola, J.A.; Moreno, S.; Molina, R. Effect of Fe and Ce on Al-Pillared Bentonite and Their Performance in Catalytic Oxidation Reactions. Appl. Catal. A Gen. 2007, 317, 120–128. [Google Scholar] [CrossRef]
- Dambrauskas, T.; Davidoviciene, D.; Eisinas, A.; Baltakys, K. Thermal stability, porosity, and catalytic activity of compound formed in a CaO-SiO2-Cu(NO3)2-H2O system. Surf. Interfaces 2023, 37, 102696. [Google Scholar] [CrossRef]
- Dambrauskas, T.; Baltakys, K. Synthesis and properties of catalyst based on semicrystalline calcium silicate hydrate with intercalated Co2+, Cu2+, and Cr3+ ions. Surf. Interfaces 2024, 47, 104002. [Google Scholar] [CrossRef]
Temperature, °C | k, s−1 | ln k |
---|---|---|
260 | 0.127 | −2.067 |
280 | 0.223 | −1.501 |
300 | 0.412 | −0.886 |
320 | 0.518 | −0.659 |
Catalyst | Support | VOCs | Conversion Degree, % | Temperature, °C | Activation Energy, kJ/mol | Reference |
---|---|---|---|---|---|---|
Cr | - | Benzene | 99 | 350 | 44.7 | [38] |
Cr | Betonite | Chlorobenzene | 90 | 600 | - | [39] |
Cr | Semicrystalline CSH (C/S = 1.5) | Propanol | 95 | 240 | - | [29] |
Pd | Betonite | Chlorobenzene | 90 | 600 | - | [39] |
Co | Clay | Acetylene | 100 | 360 | 55 | [40] |
Co | Clay | Propylene | 100 | 460 | 56 | [40] |
Mn | - | Toluene | 90 | 248 | 253.7 | [41] |
Mn | Clay | Propane | 92 | 450 | - | [42] |
Mn | Silica | Chlorobenzene | 100 | 500 | - | [43] |
Fe | Montmorillonite | Chlorobenzene | 100 | 500 | - | [44] |
Cu | Semicrystalline CSH (C/S = 1.5) | Propanol | 94 | 290 | - | [45] |
Cu + Co + Cr | Semicrystalline CSH (C/S = 1.5) | Propanol | 97 | 300 | - | [46] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sidaraite, R.; Baltakys, K.; Jaskunas, A.; Naslenas, N.; Slavinskas, D.; Slavinskas, E.; Dambrauskas, T. Kinetic Study and Catalytic Activity of Cr3+ Catalyst Supported on Calcium Silicate Hydrates for VOC Oxidation. Materials 2024, 17, 3489. https://doi.org/10.3390/ma17143489
Sidaraite R, Baltakys K, Jaskunas A, Naslenas N, Slavinskas D, Slavinskas E, Dambrauskas T. Kinetic Study and Catalytic Activity of Cr3+ Catalyst Supported on Calcium Silicate Hydrates for VOC Oxidation. Materials. 2024; 17(14):3489. https://doi.org/10.3390/ma17143489
Chicago/Turabian StyleSidaraite, Ramune, Kestutis Baltakys, Andrius Jaskunas, Nedas Naslenas, Darius Slavinskas, Edvinas Slavinskas, and Tadas Dambrauskas. 2024. "Kinetic Study and Catalytic Activity of Cr3+ Catalyst Supported on Calcium Silicate Hydrates for VOC Oxidation" Materials 17, no. 14: 3489. https://doi.org/10.3390/ma17143489
APA StyleSidaraite, R., Baltakys, K., Jaskunas, A., Naslenas, N., Slavinskas, D., Slavinskas, E., & Dambrauskas, T. (2024). Kinetic Study and Catalytic Activity of Cr3+ Catalyst Supported on Calcium Silicate Hydrates for VOC Oxidation. Materials, 17(14), 3489. https://doi.org/10.3390/ma17143489