Quaternary Zinc Alloys with Magnesium, Calcium and Strontium after Hydrostatic Extrusion—Microstructure and Its Impact on Mechanical and Corrosion Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Processing
2.2. Mechanical Properties—Static Tensile Test
2.3. Corrosion Properties—Static Corrosion Test
2.4. Microstructural Observations
3. Results and Discussion
3.1. Mechanical Properties
3.2. Microstructural Characterization
3.3. Corrosion Rate
4. Conclusions
- Hydrostatic extrusion of the quaternary zinc alloys leads to a large improvement in their mechanical properties. The obtained UTS and YS are on the same high level, regardless of the composition of the alloys when elongation rose with the amount of magnesium added.
- Increasing the content of magnesium as an alloying additive may have contributed to greater material refinement, but also changed the distribution of the intermetallic phases, which also became more refined, especially for Mg2Zn11 and SrZn13.
- The corrosion rate had comparable values, but observations of the surface and cross sections of the samples after corrosion tests indicated a relationship between magnesium content and the occurrence of corrosion pitting in the material caused by the intermetallic phase.
- The alloys with the highest amount of elements added possess the best balance between uniform distribution of the intermetallic phase and grain refinement, as seen by the most uniform corrosion with the smallest observed corrosion pits and improvement in mechanical properties satisfying the requirements for bone screws.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowen, P.K.; Drelich, J.; Goldman, J. Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents. Adv. Mater. 2013, 25, 2577. [Google Scholar] [CrossRef] [PubMed]
- Chandra, G.; Pandey, A. Biodegradable bone implants in orthopedic applications: A review. Biocybern. Biomed. Eng. 2020, 40, 596–610. [Google Scholar] [CrossRef]
- Lin, J.; Tong, X.; Shi, Z.; Zhang, D.; Zhang, L.; Wang, K.; Wei, A.; Jin, L.; Lin, J.; Li, Y.; et al. A biodegradable Zn-1Cu-0.1Ti alloy with antibacterial properties for orthopedic applications. Acta Biomater. 2020, 106, 410–427. [Google Scholar] [CrossRef] [PubMed]
- Venezuela, J.; Dargusch, M. The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: A comprehensive review. Acta Biomater. 2019, 87, 1–40. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Yang, H.; Zheng, Y.; Chen, X.-H.; Yang, J.-A.; Zhu, D.; Ruan, L.; Takashima, K. Challenges in the use of zinc and its alloys as biodegradable metals: Perspective from biomechanical compatibility. Acta Biomater. 2019, 97, 23–45. [Google Scholar] [CrossRef] [PubMed]
- Pinc, J.; Školáková, A.; Hybášek, V.; Msallamová, Š.; Veřtát, P.; Ashcheulov, P.; Vondracek, M.; Duchon, J.; McCarroll, I.; Hyvl, M.; et al. A detailed mechanism of degradation behaviour of biodegradable as-ECAPed Zn-0.8Mg-0.2Sr with emphasis on localized corrosion attack. Bioact. Mater. 2023, 27, 447–460. [Google Scholar] [CrossRef] [PubMed]
- Čapek, J.; Kubásek, J.; Pinc, J.; Drahokoupil, J.; Čavojský, M.; Vojtěch, D. Extrusion of the biodegradable ZnMg0.8Ca0.2 alloy—The influence of extrusion parameters on microstructure and mechanical characteristics. J. Mech. Behav. Biomed. Mater. 2020, 108, 103796. [Google Scholar] [CrossRef] [PubMed]
- Pinc, J.; Čapek, J.; Kubásek, J.; Veřtát, P.; Hosová, K. Microstructure and mechanical properties of the potentially biodegradable ternary system Zn-Mg0.8-Ca0.2. Procedia Struct. Integr. 2019, 23, 21–26. [Google Scholar] [CrossRef]
- Čapek, J.; Pinc, J.; Kubásek, J.; Molnárová, O.; Maňák, J.; Drahokoupil, J. ZnMg0.8Ca/Sr0.2 ternary alloys—The influence of the third element on material properties. Procedia Struct. Integr. 2019, 23, 3–8. [Google Scholar] [CrossRef]
- Li, H.F.; Xie, X.H.; Zheng, Y.F.; Cong, Y.; Zhou, F.Y.; Qiu, K.J.; Wang, X.; Chen, S.H.; Huang, L.; Tian, L.; et al. Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Sci. Rep. 2015, 5, 10719. [Google Scholar] [CrossRef]
- Li, H.; Yang, H.; Zheng, Y.; Zhou, F.; Qiu, K.; Wang, X. Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr. Mater. Des. 2015, 83, 95–102. [Google Scholar] [CrossRef]
- Liu, X.; Sun, J.; Qiu, K.; Yang, Y.; Pu, Z.; Li, L.; Zheng, Y. Effects of alloying elements (Ca and Sr) on microstructure, mechanical property and in vitro corrosion behavior of biodegradable Zn-1.5Mg alloy. J. Alloys Compd. 2016, 664, 444–452. [Google Scholar] [CrossRef]
- Vojtěch, D.; Kubásek, J.; Šerák, J.; Novák, P. Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation. Acta Biomater. 2011, 7, 3515–3522. [Google Scholar] [CrossRef] [PubMed]
- Yang, H.; Jia, B.; Zhang, Z.; Qu, X.; Li, G.; Lin, W.; Zhu, D.; Dai, K.; Zheng, Y. Alloying design of biodegradable zinc as promising bone implants for load-bearing applications. Nat. Commun. 2020, 11, 1–16. [Google Scholar]
- Jia, B.; Yang, H.; Han, Y.; Zhang, Z.; Qu, X.; Zhuang, Y.; Wu, Q.; Zheng, Y.; Dai, K. In vitro and in vivo studies of Zn-Mn biodegradable metals designed for orthopedic applications. Acta Biomater. 2020, 108, 358–372. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Tong, X.; Wang, K.; Shi, Z.; Li, Y.; Dargusch, M.; Wen, C. Biodegradable Zn–3Cu and Zn–3Cu–0.2Ti alloys with ultrahigh ductility and antibacterial ability for orthopedic applications. J. Mater. Sci. Technol. 2021, 68, 76–90. [Google Scholar] [CrossRef]
- Jia, B.; Yang, H.; Zhang, Z.; Qu, X.; Jia, X.; Wu, Q.; Han, Y.; Zheng, Y.; Dai, K. Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies. Bioact. Mater. 2021, 6, 1588–1604. [Google Scholar] [CrossRef] [PubMed]
- Sun, J.; Zhang, X.; Shi, Z.Z.; Gao, X.X.; Li, H.Y.; Zhao, F.Y.; Wang, J.Q.; Wang, L.N. Development of a high-strength Zn-Mn-Mg alloy for ligament reconstruction fixation. Acta Biomater. 2020, in press. [CrossRef]
- Pachla, W.; Przybysz, S.; Jarzębska, A.; Bieda, M.; Sztwiertnia, K.; Kulczyk, M.; Skiba, J. Structural and mechanical aspects of hypoeutectic Zn-Mg alloys for biodegradable vascular stent applications. Bioact. Mater. 2021, 6, 26–44. [Google Scholar] [CrossRef]
- Jarzębska, A.; Bieda, M.; Maj, Ł.; Chulist, R.; Wojtas, D.; Strąg, M.; Sułkowski, B.; Przybysz, S.; Pachla, W.; Sztwiertnia, K. Controlled Grain Refinement of Biodegradable Zn-Mg Alloy: The Effect of Magnesium Alloying and Multi-Pass Hydrostatic Extrusion Preceded by Hot Extrusion. Metall. Mater. Trans. A 2020, 51, 6784–6796. [Google Scholar] [CrossRef]
- Jarzębska, A.; Bieda, M.; Kawałko, J.; Rogal, Ł.; Koprowski, P.; Sztwiertnia, K.; Pachla, W.; Kulczyk, M. A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties. Mater. Lett. 2018, 211, 58–61. [Google Scholar] [CrossRef]
- Jarzębska, A.; Bieda, M.; Kawałko, J.; Koprowski, P.; Chulist, R.; Kania, B.; Sztwiertnia, K.; Pachla, W.; Kulczyk, M. Synergistic effect of Mg addition and hydrostatic extrusion on microstructure and texture of biodegradable low-alloyed zinc. IOP Conf. Ser. Mater. Sci. Eng. 2018, 375, 012008. [Google Scholar] [CrossRef]
- Jarzębska, A.; Pachla, W.; Bieda, M.; Sztwiertnia, K. A Method of Producing Rods from Zinc-Based Alloys Especially for Biodegradable Medical Implants. Patent Application No. P.429952, October 2021. [Google Scholar]
- Pieła, K.; Wróbel, M.; Sztwiertnia, K.; Jaskowski, M.; Kawałko, J.; Bieda, M.; Kiper, M.; Jarzębska, A. Zinc subjected to plastic deformation by complex loading and conventional extrusion: Comparison of the microstructure and mechanical properties. Mater. Des. 2017, 117, 111–120. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, Y.; Chen, X.H.; Yang, J.A.; Pan, H.; Chen, D.; Wang, L.; Zhang, J.; Zhu, D.; Wu, S.; et al. Fundamental Theory of Biodegradable Metals—Definition, Criteria, and Design. Adv. Funct. Mater. 2019, 29, 1805402. [Google Scholar] [CrossRef]
- Butts, D.A.; Gale, W.F. 11—Equilibrium diagrams. In Smithells Metals Reference Book, 8th ed.; Totemeier, W.F.G.C., Ed.; Butterworth-Heinemann: Oxford, UK, 2004; pp. 1–534. [Google Scholar]
- Kulczyk, M.; Skiba, J.; Skorupska, M.; Przybysz, S.; Smalc-Koziorowska, J. Influence of Strain Rates during Severe Plastic Strain Processes on Microstructural and Mechanical Evolution in Pure Zinc. Materials 2022, 15, 4892. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Li, G.; Jia, Q.; Bian, D.; Guan, S.; Kulyasova, O.; Valiev, R.; Rau, J.V.; Zheng, Y. Recent advances on the mechanical behavior of zinc based biodegradable metals focusing on the strain softening phenomenon. Acta Biomater 2022, 152, 1–18. [Google Scholar] [CrossRef]
- Gieleciak, M.; Janus, K.; Maj, Ł.; Petrzak, P.; Bieda, M.; Jarzębska, A. The effect of magnesium and copper addition on the microstructure, mechanical properties and corrosion rate of as-cast biodegradable zinc alloys. Bull. Pol. Acad. Sci. Tech. Sci. 2024, 72, e149175. [Google Scholar] [CrossRef]
Mg | Ca | Sr | |
---|---|---|---|
ZnMgCaSr_1 | 0.225 ± 0.020 | 0.567 ± 0.046 | 0.0558 ± 0.0045 |
ZnMgCaSr_2 | 0.522 ± 0.045 | 0.495 ± 0.042 | 0.536 ± 0.046 |
ZnMgCaSr_3 | 1.012 ± 0.090 | 0.122 ± 0.010 | 0.0103 ± 0.0009 |
Mechanical Properties | ZnMgCaSr_1 | ZnMgCaSr_2 | ZnMgCaSr_3 | |||
---|---|---|---|---|---|---|
Hot Extrusion 250 °C | Hydrostatic Extrusion | Hot Extrusion 250 °C | Hydrostatic Extrusion | Hot Extrusion 250 °C | Hydrostatic Extrusion | |
YS [MPa] | 249 ± 3 | 324 ± 13 | - | 314 ± 23 | 305 ± 5 | 343 ± 12 |
UTS [MPa] | 320 ± 1 | 435 ± 5 | 96.3 ± 20 | 447 ± 1 | 399 ± 5 | 444 ± 3 |
Elongation [%] | 1.8 ± 0.2 | 5.3 ± 0.2 | - | 7.8 ± 0.5 | 1.6 ± 0.1 | 10.4 ± 0.1 |
Average Grain Size ± Standard Deviation [µm] | ZnMgCaSr_1 | ZnMgCaSr_2 | ZnMgCaSr_3 | |||
---|---|---|---|---|---|---|
Number | Area | Number | Area | Number | Area | |
TS after hot extrusion | 2.08 ± 3.16 | 10.46 ± 5.33 | 1.39 ± 1.80 | 6.75 ± 3.52 | 1.76 ± 2.40 | 11.38 ± 9.17 |
LS after hot extrusion | 2.35 ± 2.81 | 8.46 ± 3.96 | 1.64 ± 1.86 | 7.00 ± 4.46 | 3.17 ± 4.68 | 23.26 ± 14.60 |
TS after hydrostatic extrusion | 0.76 ± 0.36 | 1.14 ± 0.49 | 0.68 ± 0.42 | 1.36 ± 0.90 | 0.63 ± 0.34 | 1.07 ± 0.57 |
LS after hydrostatic extrusion | 0.94 ± 0.66 | 2.55 ± 0.66 | 0.81 ± 0.51 | 1.61 ± 1.06 | 0.68 ± 0.42 | 1.36 ± 0.90 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bieda, M.; Gozdur, W.; Gieleciak, M.; Jarzębska, A.; Maj, Ł.; Rogal, Ł.; Skiba, J. Quaternary Zinc Alloys with Magnesium, Calcium and Strontium after Hydrostatic Extrusion—Microstructure and Its Impact on Mechanical and Corrosion Properties. Materials 2024, 17, 3496. https://doi.org/10.3390/ma17143496
Bieda M, Gozdur W, Gieleciak M, Jarzębska A, Maj Ł, Rogal Ł, Skiba J. Quaternary Zinc Alloys with Magnesium, Calcium and Strontium after Hydrostatic Extrusion—Microstructure and Its Impact on Mechanical and Corrosion Properties. Materials. 2024; 17(14):3496. https://doi.org/10.3390/ma17143496
Chicago/Turabian StyleBieda, Magdalena, Weronika Gozdur, Magdalena Gieleciak, Anna Jarzębska, Łukasz Maj, Łukasz Rogal, and Jacek Skiba. 2024. "Quaternary Zinc Alloys with Magnesium, Calcium and Strontium after Hydrostatic Extrusion—Microstructure and Its Impact on Mechanical and Corrosion Properties" Materials 17, no. 14: 3496. https://doi.org/10.3390/ma17143496
APA StyleBieda, M., Gozdur, W., Gieleciak, M., Jarzębska, A., Maj, Ł., Rogal, Ł., & Skiba, J. (2024). Quaternary Zinc Alloys with Magnesium, Calcium and Strontium after Hydrostatic Extrusion—Microstructure and Its Impact on Mechanical and Corrosion Properties. Materials, 17(14), 3496. https://doi.org/10.3390/ma17143496