Study of Aging Temperature on the Thermal Compression Behaviors and Microstructure of a Novel Ni-Cr-Co-Based Superalloy
Abstract
:1. Introduction
2. Material and Experimental Procedures
2.1. Materials
2.2. Hardness and Thermal Compression Test
2.3. Microstructure Observations and Mechanical Properties Test
3. Results
3.1. Thermal Compression Deformation Behaviors
3.2. Hardness Variations
3.3. Microstructure Variations
4. Discussion
4.1. Effect of Precipitates on Thermal Compression
4.2. Effect of Aging on Misorientation Angle Characteristics
5. Conclusions
- (1)
- The sample after the solid solution consists of massive twins and the continuous distribution of a rich Fe-Cr carbide phase. The peak stress value of the 950 °C aged sample is 323 MPa, which is about twice that of the other samples (650, 750 and 850 °C). The hardness of the sample at 950 °C before and after thermal compression increased from 182 to 315 HV, and the improvement is relatively small in the other samples.
- (2)
- Compared with the grain form before and after thermal deformation, the 950 °C aged sample has the most significant difference. Fibrous grains with an isotropic structure are formed after thermal deformation in the 950 °C aged sample, while equiaxed grains show anisotropy in the other samples.
- (3)
- Plenty of γ′ precipitates distribute in the matrix, which pin the dislocations and sub-grain boundaries movements; thus, the 950 °C aged sample requires more driving force to undergo recrystallization, resulting in the increased volume fractions of LAGBs.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, C.Y.; Gu, Y.F.; Harada, H.; Ping, D.H.; Sato, A. Phase stability and yield stress of Ni-base superalloys containing high Co and Ti. Metall. Mater. Trans. A-Phys. Metall. Mater. Sci. 2006, 37A, 3183–3190. [Google Scholar] [CrossRef]
- Liu, Y.; Ning, Y.; Yao, Z.; Guo, H.; Nan, Y. Effect of true strains on processing map for isothermal compression of Ni-20.0Cr-2.5Ti-1.5Nb-1.0Al Ni-base superalloy. J. Alloys Compd. 2014, 612, 56–63. [Google Scholar] [CrossRef]
- Jahangiri, M.R.; Arabi, H.; Boutorabi, S.M.A. Comparison of microstructural stability of IN939 superalloy with two different manufacturing routes during long-time aging. Trans. Nonferrous Met. Soc. China 2014, 24, 1717–1729. [Google Scholar] [CrossRef]
- Laleh, M.; Sadeghi, E.; Revilla, R.I.; Chao, Q.; Haghdadi, N.; Hughes, A.E.; Xu, W.; De Graeve, I.; Qian, M.; Gibson, I.; et al. Heat treatment for metal additive manufacturing. Prog. Mater. Sci. 2023, 133, 101051. [Google Scholar] [CrossRef]
- Tan, C.; Weng, F.; Sui, S.; Chew, Y.; Bi, G. Progress and perspectives in laser additive manufacturing of key aeroengine materials. Int. J. Mach. Tools Manuf. 2021, 170, 103804. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.; Zhan, M.; Zheng, Z.; Gao, J.; Shao, G. Electron force-induced dislocations annihilation and regeneration of a superalloy through electrical in-situ transmission electron microscopy observations. J. Mater. Sci. Technol. 2020, 36, 79–83. [Google Scholar] [CrossRef]
- Chen, Y.Q.; Francis, E.; Robson, J.; Preuss, M.; Haigh, S.J. Compositional variations for small-scale gamma prime (gamma′) precipitates formed at different cooling rates in an advanced Ni-based superalloy. Acta Mater. 2015, 85, 199–206. [Google Scholar] [CrossRef]
- Smith, T.M.; Esser, B.D.; Antolin, N.; Viswanathan, G.B.; Hanlon, T.; Wessman, A.; Mourer, D.; Windl, W.; McComb, D.W.; Mills, M.J. Segregation and eta phase formation along stacking faults during creep at intermediate temperatures in a Ni-based superalloy. Acta Mater. 2015, 100, 19–31. [Google Scholar] [CrossRef]
- Liang, L.; Xu, M.; Chen, Y.; Zhang, T.; Tong, W.; Liu, H.; Wang, H.; Li, H. Effect of welding thermal treatment on the microstructure and mechanical properties of nickel-based superalloy fabricated by selective laser melting. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2021, 819, 141507. [Google Scholar] [CrossRef]
- Shahwaz, M.; Nath, P.; Sen, I. A critical review on the microstructure and mechanical properties correlation of additively manufactured nickel-based superalloys. J. Alloys Compd. 2022, 907, 164530. [Google Scholar] [CrossRef]
- Zhou, J.; He, Y.; Shen, J.; Essa, F.A.; Yu, J. Ni/Ni3Al interface-dominated nanoindentation deformation and pop-in events. Nanotechnology 2022, 33, 105703. [Google Scholar] [CrossRef]
- Li, Z.L.; Xu, Q.Y.; Liu, B.C. Experimental investigation on recrystallization mechanism of a Ni-base single crystal superalloy. J. Alloys Compd. 2016, 672, 457–469. [Google Scholar] [CrossRef]
- Lin, Y.C.; Wu, X.Y.; Chen, X.M.; Chen, J.; Wen, D.X.; Zhang, J.L.; Li, L.T. EBSD study of a hot deformed nickel-based superalloy. J. Alloys Compd. 2015, 640, 101–113. [Google Scholar] [CrossRef]
- Wan, Z.; Hu, L.; Sun, Y.; Wang, T.; Li, Z. Microstructure evolution and dynamic softening mechanisms during high-temperature deformation of a precipitate hardening Ni-based superalloy. Vacuum 2018, 155, 585–593. [Google Scholar] [CrossRef]
- Wang, X.M.; Ding, Y.T.; Bi, Z.N.; Yu, H.Y.; Du, J.H.; Gan, G. Dynamic Recrystallization Behavior of a Novel Ni-based Superalloy. Rare Met. Mater. Eng. 2023, 52, 517–526. [Google Scholar]
- Wen, D.X.; Lin, Y.C.; Chen, J.; Deng, J.; Chen, X.M.; Zhang, J.L.; He, M. Effects of initial aging time on processing map and microstructures of a nickel-based superalloy. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2015, 620, 319–332. [Google Scholar] [CrossRef]
- Wu, Y.; Li, C.; Xia, X.; Liang, H.; Qi, Q.; Liu, Y. Precipitate coarsening and its effects on the hot deformation behavior of the recently developed γ′-strengthened superalloys. J. Mater. Sci. Technol. 2021, 67, 95–104. [Google Scholar] [CrossRef]
- Zhang, X.; Li, H.W.; Zhan, M.; Yan, S.L.; Zhang, N. Role of the inter-pass cooling rate in recrystallization behaviors of Ni-based superalloy during interrupted hot compression. Chin. J. Aeronaut. 2019, 32, 1314–1330. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, R.; Cui, C.; Zhou, Y.; Sun, X. Hot compression behaviors and deformation mechanisms of a Ni-Co-based superalloy with columnar grains. Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process. 2022, 833, 142370. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, Z.; Wang, H. Quasi in-situ analysis of compressive creep behaviors and microstructure evolutions in Al–Zr alloys with Sc and Er additions. Mater. Sci. Eng. A 2022, 852, 143650. [Google Scholar] [CrossRef]
- Qin, H.; Bi, Z.; Yu, H.; Feng, G.; Du, J.; Zhang, J. Influence of stress on precipitation behavior in Inconel 718 during aging. J. Alloys Compd. 2018, 740, 997–1006. [Google Scholar] [CrossRef]
- Humphreys, F.; Hatherly, M. Recrystallization and Related Annealing Phenomena; Elsevier: Oxford, UK, 2004. [Google Scholar]
- Zeng, Y.; Cai, X.; Koslowski, M. Effects of the stacking fault energy fluctuations on the strengthening of alloys. Acta Mater. 2019, 164, 1–11. [Google Scholar] [CrossRef]
- Shih, M.; Miao, J.; Mills, M.; Ghazisaeidi, M. Stacking fault energy in concentrated alloys. Nat. Commun. 2021, 12, 3590. [Google Scholar] [CrossRef]
- Ding, Q. Tuning element distribution, structure and properties by composition in high-entropy alloys. Nature 2019, 574, 223–227. [Google Scholar] [CrossRef]
- Lee, H.J.; Kim, H.K.; Hong, H.U.; Lee, B.S. Influence of the focus offset on the defects, microstructure, and mechanical properties of an Inconel718 superalloy fabricated by electron beam additive manufacturing. J. Alloys Compd. 2019, 781, 842–856. [Google Scholar] [CrossRef]
- Sun, W.; Wang, S.; Xin, J.; Tan, G.; Hong, M.; Wu, M.; Ke, L. Microstructure and mechanical properties of the IC10/GH3039 dissimilar electron beam welded joint. Vacuum 2020, 181, 109592. [Google Scholar] [CrossRef]
- Rong, P.; Wang, N.; Wang, L.; Yang, R.N.; Yao, W.J. The influence of grain boundary angle on the hot cracking of single crystal superalloy DD6. J. Alloys Compd. 2016, 676, 181–186. [Google Scholar] [CrossRef]
Cr | Co | Ti | Al | Fe | C | B | Si | Zr | B | Cu | P | Ni |
---|---|---|---|---|---|---|---|---|---|---|---|---|
19.37 | 16.22 | 2.33 | 1.61 | 0.094 | 0.072 | 0.055 | 0.032 | 0.026 | 0.0055 | 0.005 | 0.0035 | Bal. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, H.; Ma, Z.; Zhang, J.; Hu, J.; Qi, L.; Chen, P.; Luo, Z.; Zhou, X.; Li, J.; Wang, H. Study of Aging Temperature on the Thermal Compression Behaviors and Microstructure of a Novel Ni-Cr-Co-Based Superalloy. Materials 2024, 17, 3500. https://doi.org/10.3390/ma17143500
Cai H, Ma Z, Zhang J, Hu J, Qi L, Chen P, Luo Z, Zhou X, Li J, Wang H. Study of Aging Temperature on the Thermal Compression Behaviors and Microstructure of a Novel Ni-Cr-Co-Based Superalloy. Materials. 2024; 17(14):3500. https://doi.org/10.3390/ma17143500
Chicago/Turabian StyleCai, Hualin, Zhixuan Ma, Jiayi Zhang, Jinbing Hu, Liang Qi, Pu Chen, Zhijian Luo, Xingyu Zhou, Jingkun Li, and Hebin Wang. 2024. "Study of Aging Temperature on the Thermal Compression Behaviors and Microstructure of a Novel Ni-Cr-Co-Based Superalloy" Materials 17, no. 14: 3500. https://doi.org/10.3390/ma17143500
APA StyleCai, H., Ma, Z., Zhang, J., Hu, J., Qi, L., Chen, P., Luo, Z., Zhou, X., Li, J., & Wang, H. (2024). Study of Aging Temperature on the Thermal Compression Behaviors and Microstructure of a Novel Ni-Cr-Co-Based Superalloy. Materials, 17(14), 3500. https://doi.org/10.3390/ma17143500