Multi-Step Relaxation Characterization and Viscoelastic Modeling to Predict the Long-Term Behavior of Bitumen-Free Road Pavements Based on Polymeric Resin and Thixotropic Filler
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Experimental Relaxation Test
2.2.2. Numerical Implementation
Material Modeling for Prony Series Parameters
Virtual Setup
Numerical Verification
3. Results
3.1. Results of the Experimental Relaxation Measurements
3.2. Results of the Numerical Analyses
3.3. Results of the Verification
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Parameters | gi | ki | τi,t | E | ν |
---|---|---|---|---|---|
Units | - | - | s | MPa | - |
1 | 0.3496 | 0.3498 | 1.79 | 18.17 | 0.3 |
2 | 0.0336 | 0.0762 | 4.95 | ||
3 | 0.0313 | 0.0374 | 5.91 | ||
4 | 0.1966 | 0.1797 | 49.69 | ||
5 | 0.2019 | 0.1612 | 51.69 |
Parameters | gi | ki | τi,t | E | ν |
---|---|---|---|---|---|
Units | - | - | s | MPa | - |
1 | 0.0242 | 0.8845 | 0.40 | 29.50 | 0.3 |
2 | 0.0025 | 0.0032 | 3.92 | ||
3 | 0.0181 | 0.0014 | 28.55 | ||
4 | 0.7255 | 0.0263 | 61.78 | ||
5 | 0.2297 | 0.0550 | 118.15 |
Parameters | gi | ki | τi,t | E | ν |
---|---|---|---|---|---|
Units | - | - | s | MPa | - |
1 | 0.2580 | 0.3458 | 0.70 | 24.24 | 0.3 |
2 | 0.2387 | 0.2394 | 3.26 | ||
3 | 0.0683 | 0.0921 | 25.62 | ||
4 | 0.1015 | 0.0840 | 36.68 | ||
5 | 0.1558 | 0.1232 | 56.35 |
Parameters | gi | ki | τi,t | E | ν |
---|---|---|---|---|---|
Units | - | - | s | MPa | - |
1 | 0.3441 | 0.3441 | 1.51 | 33.46 | 0.3 |
2 | 0.2069 | 0.2069 | 2.83 | ||
3 | 0.1125 | 0.1125 | 11.94 | ||
4 | 0.0583 | 0.0583 | 52.44 | ||
5 | 0.1008 | 0.1008 | 60.17 |
Parameters | gi | ki | τi,t | E | ν |
---|---|---|---|---|---|
Units | - | - | s | MPa | - |
1 | 0.2956 | 0.3558 | 0.3 | 21.26 | 0.3 |
2 | 0.2379 | 0.2364 | 2.8 | ||
3 | 0.1619 | 0.1543 | 16.7 | ||
4 | 0.0737 | 0.0117 | 48 | ||
5 | 0.0235 | 0.0730 | 56 |
Parameters | gi | ki | τi,t | E | ν |
---|---|---|---|---|---|
Units | - | - | s | MPa | - |
1 | 0.0065 | 0.7679 | 0.30 | 25.44 | 0.3 |
2 | 0.0024 | 0.0742 | 2.81 | ||
3 | 0.0023 | 0.0854 | 15.46 | ||
4 | 0.5398 | 0.0001 | 63.72 | ||
5 | 0 | 0.0002 | 93.33 |
References
- Mallick, R.B.; El-Korchi, T. Pavement Engineering: Principles and Practice; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- Sienkiewicz, M.; Gnatowski, P.; Malus, M.; Grzegórska, A.; Ipakchi, H.; Jouyandeh, M.; Kucińska-Lipka, J.; Navarro, F.J.; Saeb, M.R. Eco-friendly modification of bitumen: The effects of rubber wastes and castor oil on the microstructure, processability and properties. J. Clean. Prod. 2024, 447, 141524. [Google Scholar] [CrossRef]
- Yuliestyan, A.; Cuadri, A.A.; García-Morales, M.; Partal, P. Binder Design for Asphalt Mixes with Reduced Temperature: EVA Modified Bitumen and its Emulsions. Transp. Res. Procedia 2016, 14, 3512–3518. [Google Scholar] [CrossRef]
- Saberi, F.; Fakhri, M.; Azami, A. Evaluation of warm mix asphalt mixtures containing reclaimed asphalt pavement and crumb rubber. J. Clean. Prod. 2017, 165, 1125–1132. [Google Scholar] [CrossRef]
- Bao, B.; Liu, J.; Li, S.; Si, C.; Zhang, Q. Laboratory Evaluation of the Relationship of Asphalt Binder and Asphalt Mastic via a Modified MSCR Test. Coatings 2023, 13, 304. [Google Scholar] [CrossRef]
- Dehouche, N.; Kaci, M.; Mokhtar, K.A. Influence of thermo-oxidative aging on chemical composition and physical properties of polymer modified bitumens. Constr. Build. Mater. 2012, 26, 350–356. [Google Scholar] [CrossRef]
- Fan, S.; Zhu, H.; Lu, Z. Fatigue Behavior and Healing Properties of Aged Asphalt Binders. J. Mater. Civ. Eng. 2022, 34, 04022117. [Google Scholar] [CrossRef]
- Mazzoni, G.; Stimilli, A.; Cardone, F.; Canestrari, F. Fatigue, self-healing and thixotropy of bituminous mastics including aged modified bitumens and different filler contents. Constr. Build. Mater. 2017, 131, 496–502. [Google Scholar] [CrossRef]
- Partl, M.N. Towards improved testing of modern asphalt pavements. Mater. Struct. 2018, 51, 166. [Google Scholar] [CrossRef]
- Mewis, J.; Wagner, N.J. Thixotropy. Adv. Colloid Interface Sci. 2009, 147–148, 214–227. [Google Scholar] [CrossRef] [PubMed]
- Miglietta, F.; Tsantilis, L.; Baglieri, O.; Santagata, E. A new approach for the evaluation of time–temperature superposition effects on the self-healing of bituminous binders. Constr. Build. Mater. 2021, 287, 122987. [Google Scholar] [CrossRef]
- Zhao, R.; Jing, F.; Wang, R.; Cai, J.; Zhang, J.; Wang, Q.; Xie, H. Influence of oligomer content on viscosity and dynamic mechanical properties of epoxy asphalt binders. Constr. Build. Mater. 2022, 338, 127524. [Google Scholar] [CrossRef]
- Tan, G.; Wang, W.; Cheng, Y.; Wang, Y.; Zhu, Z. Master Curve Establishment and Complex Modulus Evaluation of SBS-Modified Asphalt Mixture Reinforced with Basalt Fiber Based on Generalized Sigmoidal Model. Polymers 2020, 12, 1586. [Google Scholar] [CrossRef] [PubMed]
- Jing, F.; Wang, R.; Zhao, R.; Li, C.; Cai, J.; Ding, G.; Wang, Q.; Xie, H. Enhancement of Bonding and Mechanical Performance of Epoxy Asphalt Bond Coats with Graphene Nanoplatelets. Polymers 2023, 15, 412. [Google Scholar] [CrossRef] [PubMed]
- Emminger, C.; Cakmak, U.D.; Lackner, M.; Major, Z. Mechanical Characterization of Asphalt Mixtures Based on Polymeric Resin and Thixotropic Filler as a Substitute for Bitumen. Coatings 2023, 13, 932. [Google Scholar] [CrossRef]
- Antunes, V.; Freire, A.C.; Quaresma, L.; Micaelo, R. Influence of the geometrical and physical properties of filler in the filler–bitumen interaction. Constr. Build. Mater. 2015, 76, 322–329. [Google Scholar] [CrossRef]
- Luo, X.; Luo, R.; Lytton, R.L. Characterization of Fatigue Damage in Asphalt Mixtures Using Pseudostrain Energy. J. Mater. Civ. Eng. 2013, 25, 208–218. [Google Scholar] [CrossRef]
- Liu, H.; Zeiada, W.; Al-Khateeb, G.G.; Shanableh, A.; Samarai, M. A framework for linear viscoelastic characterization of asphalt mixtures. Mater. Struct. 2020, 53, 32. [Google Scholar] [CrossRef]
- Liu, H.; Luo, R. Development of master curve models complying with linear viscoelastic theory for complex moduli of asphalt mixtures with improved accuracy. Constr. Build. Mater. 2017, 152, 259–268. [Google Scholar] [CrossRef]
- Tschoegl, N.W. The Phenomenological Theory of Linear Viscoelastic Behavior: An Introduction; Springer: Berlin/Heidelberg, Germany, 1989. [Google Scholar]
- Bai, T.; Hu, Z.; Hu, X.; Liu, Y.; Fuentes, L.; Walubita, L.F. Rejuvenation of short-term aged asphalt-binder using waste engine oil. Can. J. Civ. Eng. 2020, 47, 822–832. [Google Scholar] [CrossRef]
- Zhang, Y.; Ma, T.; Ling, M.; Zhang, D.; Huang, X. Predicting Dynamic Shear Modulus of Asphalt Mastics Using Discretized-Element Simulation and Reinforcement Mechanisms. J. Mater. Civ. Eng. 2019, 31, 04019163. [Google Scholar] [CrossRef]
- Blab, R.; Harvey, J.T. Modeling Measured 3D Tire Contact Stresses in a Viscoelastic FE Pavement Model. Int. J. Geomech. 2002, 2, 271–290. [Google Scholar] [CrossRef]
- Khurshid, A.; Khan, R.; Khan, D.; Jamal, H.; Hasan, M.R.M.; Khedher, K.M.; Salem, M.A. Micromechanical modeling for analyzing non-linear behavior of flexible pavements under truck loading. Case Stud. Constr. Mater. 2024, 20, e02754. [Google Scholar] [CrossRef]
- Keshavarzi, B.; Kim, Y.R. A viscoelastic-based model for predicting the strength of asphalt concrete in direct tension. Constr. Build. Mater. 2016, 122, 721–727. [Google Scholar] [CrossRef]
- Bai, T.; Cheng, Z.; Hu, X.; Fuentes, L.; Walubita, L.F. Viscoelastic modelling of an asphalt pavement based on actual tire-pavement contact pressure. Road Mater. Pavement Des. 2021, 22, 2458–2477. [Google Scholar] [CrossRef]
- Asim, M.; Khan, R.; Ahmed, A.; Ali, Q. Numerical modeling of nonlinear behavior of asphalt concrete. Development 2018, 5. [Google Scholar]
- Ban, H.; Im, S.; Kim, Y.-R. Nonlinear viscoelastic approach to model damage-associated performance behavior of asphaltic mixture and pavement structure. Can. J. Civ. Eng. 2013, 40, 313–323. [Google Scholar] [CrossRef]
- Luo, R.; Liu, H. Improving the Accuracy of Dynamic Modulus Master Curves of Asphalt Mixtures Constructed Using Uniaxial Compressive Creep Tests. J. Mater. Civ. Eng. 2017, 29, 04017032. [Google Scholar] [CrossRef]
- Aigner, E.; Lackner, R.; Eberhardsteiner, J. Multiscale viscoelastic−viscoplastic model for the prediction of permanent deformation in flexible pavements. Int. J. Mult. Comp. Eng. 2012, 10, 615–634. [Google Scholar] [CrossRef]
- Horvat, B.; Ducman, V. Influence of Particle Size on Compressive Strength of Alkali Activated Refractory Materials. Materials 2020, 13, 2227. [Google Scholar] [CrossRef]
- Quarzwerke GmbH. Quarzmehl 6.400, (Sicherheitsdatenblatt (gemäß Verordnung (EG) 1907/2006 und Verordnung (EG) 1272/2008)). 2014. [Google Scholar]
- Scherf GmbH. Basaltsand 0,2-1,9 mm. 2021. [Google Scholar]
- Strobel Quarzsand GmbH. Kristall Quarzsand feuergetrocknet o. haldenfeucht Feinstquarzsande. (Sicherheitsdatenblatt (gemäß Verordnung (EG) 1907/2006, Verordnung (EG) 1272/2008, und Verordnung (EG) 830/2015)). 2017. [Google Scholar]
- Aurangzeb, Q.; Ozer, H.; Al-Qadi, I.L.; Hilton, H.H. Viscoelastic and Poisson’s ratio characterization of asphalt materials: Critical review and numerical simulations. Mater. Struct. 2017, 50, 49. [Google Scholar] [CrossRef]
- González, J.M.; Canet, J.M.; Oller, S.; Miró, R. A viscoplastic constitutive model with strain rate variables for asphalt mixtures—Numerical simulation. Comput. Mater. Sci. 2007, 38, 543–560. [Google Scholar] [CrossRef]
- Hofko, B. Hot Mix Asphalt under Cyclic Compressive Loading: Towards an Enhanced Characterization of Hot Mix Asphalt under Cyclic Compressive Loading (Zugl.: Wien, TU, Diss., 2011); Südwestdeutscher Verlag für Hochschulschriften: Saarbrücken, Germany, 2012. [Google Scholar]
- Graziani, A.; Bocci, M.; Canestrari, F. Complex Poisson’s ratio of bituminous mixtures: Measurement and modeling. Mater. Struct. 2014, 47, 1131–1148. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Y.; Zhao, Z.; Yuan, M.; Tsige, M.; Wang, S.-Q. Investigating nature of stresses in extension and compression of glassy polymers via stress relaxation. Polymer 2020, 202, 122517. [Google Scholar] [CrossRef]
Material Formulation | Silica Dust (SD) in wt% | Silica Sand (SS) in wt% | Basalt Sand (BS) in wt% | Ratio Dust–Sand |
---|---|---|---|---|
F1 | 0 | 0 | 80 | 0:80 |
F2 | 20 | 0 | 60 | 20:60 |
F3 | 0 | 20 | 60 | 0:80 |
F4 | 5 | 5 | 70 | 5:75 |
F5 | 0 | 10 | 70 | 0:80 |
F6 | 10 | 0 | 70 | 10:70 |
F7 | 15 | 15 | 50 | 15:65 |
Filler/Processing Agent | Bulk Density [g/cm3] |
---|---|
Silica dust | 2.65 |
Silica Sand | 2.65 |
Basalt sand | 2.71 |
Thixotropy agent | 2.2 |
Pigment | 4.6 |
Catalysator | 0.62 |
Binder | 0.98 |
Parameters | gi | ki | τi,t | E | ν |
---|---|---|---|---|---|
Units | - | - | s | MPa | - |
1 | 0.36044 | 0.3504 | 0.50 | 33.8 | 0.3 |
2 | 0.15096 | 0.1910 | 3.23 | ||
3 | 0.10181 | 0.0952 | 8.62 | ||
4 | 0.05211 | 0.0524 | 22.06 | ||
5 | 0.11754 | 0.1163 | 46.30 |
Material Formulation | E [MPa] | EAdjusted [MPa] | Γ [-] |
---|---|---|---|
F1 | 33.80 | 18.00 | 0.53 |
F2 | 18.17 | 18.17 | 1.00 |
F3 | 29.50 | 14.75 | 0.50 |
F4 | 24.24 | 21.22 | 0.88 |
F5 | 33.46 | 15.00 | 0.45 |
F6 | 21.26 | 14.30 | 0.67 |
F7 | 25.44 | 20.00 | 0.79 |
Material Formulation | k @−1 mm [s−1] | k @−2 mm [s−1] | k @−4 mm [s−1] |
---|---|---|---|
F1 | −0.2045 | −0.1995 | −0.1734 |
F2 | −0.1864 | −0.1747 | −0.1727 |
F3 | −0.2043 | −0.1925 | −0.1816 |
F4 | −0.2017 | −0.1888 | −0.1830 |
F5 | −0.2174 | −0.1887 | −0.1855 |
F6 | −0.2144 | −0.1857 | −0.1846 |
F7 | −0.1956 | −0.1765 | −0.1817 |
Average | −0.2035 | −0.1866 | −0.1804 |
Standard deviation | ±0.0106 | ±0.0087 | ±0.0052 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Emminger, C.; Cakmak, U.D.; Major, Z. Multi-Step Relaxation Characterization and Viscoelastic Modeling to Predict the Long-Term Behavior of Bitumen-Free Road Pavements Based on Polymeric Resin and Thixotropic Filler. Materials 2024, 17, 3511. https://doi.org/10.3390/ma17143511
Emminger C, Cakmak UD, Major Z. Multi-Step Relaxation Characterization and Viscoelastic Modeling to Predict the Long-Term Behavior of Bitumen-Free Road Pavements Based on Polymeric Resin and Thixotropic Filler. Materials. 2024; 17(14):3511. https://doi.org/10.3390/ma17143511
Chicago/Turabian StyleEmminger, Carina, Umut D. Cakmak, and Zoltan Major. 2024. "Multi-Step Relaxation Characterization and Viscoelastic Modeling to Predict the Long-Term Behavior of Bitumen-Free Road Pavements Based on Polymeric Resin and Thixotropic Filler" Materials 17, no. 14: 3511. https://doi.org/10.3390/ma17143511
APA StyleEmminger, C., Cakmak, U. D., & Major, Z. (2024). Multi-Step Relaxation Characterization and Viscoelastic Modeling to Predict the Long-Term Behavior of Bitumen-Free Road Pavements Based on Polymeric Resin and Thixotropic Filler. Materials, 17(14), 3511. https://doi.org/10.3390/ma17143511