Plasma Engineering of Co4N/CoN Heterostructure for Boosting Supercapacitor Performance
Abstract
:1. Introduction
2. Experimental Section
2.1. Preparation of the Electrode Materials
2.1.1. Preparation of Co-MFF
2.1.2. Preparation of CoN/Co4N@C
2.1.3. Preparation of Co4N/CoN@C-P
2.2. Electrochemical Measurement
2.3. Characterization
3. Results and Discussion
3.1. Electrochemical Performance
3.2. Morphological and Structural Characterizations
3.3. Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Karthikeyan, S.; Narenthiran, B.; Sivanantham, A.; Bhatlu, L.D.; Maridurai, T. Supercapacitor: Evolution and review. Mater. Today Proc. 2021, 46, 3984–3988. [Google Scholar] [CrossRef]
- Molahalli, V.; Chaithrashree, K.; Singh, M.K.; Agrawal, M.; Krishnan, S.G.; Hegde, G. Past decade of supercapacitor research—Lessons learned for future innovations. J. Energy Storage 2023, 70, 108062. [Google Scholar] [CrossRef]
- Reece, R.; Lekakou, C.; Smith, P.A. A High-Performance Structural Supercapacitor. ACS Appl. Mater. Interfaces 2020, 12, 25683–25692. [Google Scholar] [CrossRef] [PubMed]
- Şahin, M.; Blaabjerg, F.; Sangwongwanich, A. A Comprehensive Review on Supercapacitor Applications and Developments. Energies 2022, 15, 674. [Google Scholar] [CrossRef]
- Adalati, R.; Sharma, M.; Sharma, S.; Kumar, A.; Malik, G.; Boukherroub, R.; Chandra, R. Metal nitrides as efficient electrode material for supercapacitors: A review. J. Energy Storage 2022, 56, 105912. [Google Scholar] [CrossRef]
- Mukhiya, T.; Tiwari, A.P.; Chhetri, K.; Kim, T.; Dahal, B.; Muthurasu, A.; Kim, H.Y. A metal–organic framework derived cobalt oxide/nitrogen-doped carbon nanotube nanotentacles on electrospun carbon nanofiber for electrochemical energy storage. Chem. Eng. J. 2021, 420, 129679. [Google Scholar] [CrossRef]
- Choi, C.; Ashby, D.S.; Butts, D.M.; DeBlock, R.H.; Wei, Q.; Lau, J.; Dunn, B. Achieving high energy density and high power density with pseudocapacitive materials. Nat. Rev. Mater. 2019, 5, 5–19. [Google Scholar] [CrossRef]
- Hu, M.; Zhang, H.; Hu, T.; Fan, B.; Wang, X.; Li, Z. Emerging 2D MXenes for supercapacitors: Status, challenges and prospects. Chem. Soc. Rev. 2020, 49, 6666–6693. [Google Scholar] [CrossRef]
- Simon, P.; Gogotsi, Y.; Dunn, B. Where Do Batteries End and Supercapacitors Begin? Science 2014, 34, 1210–1211. [Google Scholar] [CrossRef]
- Baig, M.M.; Khan, M.A.; Gul, I.H.; Rehman, S.U.; Shahid, M.; Javaid, S.; Baig, S.M. A Review of Advanced Electrode Materials for Supercapacitors: Challenges and Opportunities. J. Electron. Mater. 2023, 52, 5775–5794. [Google Scholar] [CrossRef]
- Song, A.; Song, S.; Duanmu, M.; Tian, H.; Liu, H.; Qin, X.; Shao, G.; Wang, G. Recent Progress of Non-Noble Metallic Heterostructures for the Electrocatalytic Hydrogen Evolution. Small Sci. 2023, 3, 2300036. [Google Scholar] [CrossRef]
- Pham, T.; Forrest, K.A.; Space, B.; Eckert, J. Dynamics of H2 adsorbed in porous materials as revealed by computational analysis of inelastic neutron scattering spectra. Phys. Chem. Chem. Phys. 2016, 18, 17141–17158. [Google Scholar] [CrossRef]
- Yang, J.; Ma, Z.; Gao, W.; Wei, M. Layered Structural Co-Based MOF with Conductive Network Frames as a New Supercapacitor Electrode. Chem. Eur. J. 2016, 23, 631–636. [Google Scholar] [CrossRef] [PubMed]
- Akkinepally, B.; Kumar, G.D.; Reddy, I.N.; Rao, H.J.; Nagajyothi, P.C.; Alothman, A.A.; Alqahtani, K.N.; Hassan, A.M.; Javed, M.S.; Shim, J. Investigation of Supercapacitor Electrodes Based on MIL-101(Fe) Metal-Organic Framework: Evaluating Electrochemical Performance through Hydrothermal and Microwave-Assisted Synthesis. Crystals 2023, 13, 1547. [Google Scholar] [CrossRef]
- Senthil, R.A.; Osman, S.; Pan, J.; Liu, X.; Wu, Y. Recent progress on porous carbon derived from Zn and Al based metal-organic frameworks as advanced materials for supercapacitor applications. J. Energy Storage 2021, 44, 103263. [Google Scholar] [CrossRef]
- Yue, L.; Chen, L.; Wang, X.; Lu, D.; Zhou, W.; Shen, D.; Yang, Q.; Xiao, S.; Li, Y. Ni/Co-MOF@aminated MXene hierarchical electrodes for high-stability supercapacitors. Chem. Eng. J. 2023, 451, 138687. [Google Scholar] [CrossRef]
- Lan, M.; Wang, X.; Zhao, R.; Dong, M.; Fang, L.; Wang, L. Metal-organic framework-derived porous MnNi2O4 microflower as an advanced electrode material for high-performance supercapacitors. J. Alloys Compd. 2020, 821, 153546. [Google Scholar] [CrossRef]
- Li, Z.; Ren, J.; Bu, J.; Wang, L.; Shi, W.; Pan, D.; Wu, M. Carbonated MOF-based graphene hydrogel for hierarchical all-carbon supercapacitors with ultra-high areal and volumetric energy density. J. Electroanal. Chem. 2020, 876, 114489. [Google Scholar] [CrossRef]
- Ren, J.; Huang, Y.; Zhu, H.; Zhang, B.; Zhu, H.; Shen, S.; Tan, G.; Wu, F.; He, H.; Lan, S.; et al. Recent progress on MOF-derived carbon materials for energy storage. Carbon Energy 2020, 2, 176–202. [Google Scholar] [CrossRef]
- Chen, Z.; Song, Y.; Cai, J.; Zheng, X.; Han, D.; Wu, Y.; Zang, Y.; Niu, S.; Liu, Y.; Zhu, J.; et al. Tailoring the d-Band Centers Enables Co4N Nanosheets to Be Highly Active for Hydrogen Evolution Catalysis. Angew. Chem. Int. Ed. 2018, 57, 5076–5080. [Google Scholar] [CrossRef]
- Lu, M.; Chen, D.; Wang, B.; Li, R.; Cai, D.; Tu, H.; Yang, H.; Zhang, Y.; Han, W. Boosting alkaline hydrogen evolution performance of Co4N porous nanowires by interface engineering of CeO2 tuning. J. Mater. Chem. A 2021, 9, 1655–1662. [Google Scholar] [CrossRef]
- Ouyang, T.; Cheng, K.; Gao, Y.; Kong, S.; Ye, K.; Wang, G.; Cao, D. Molten salt synthesis of nitrogen doped porous carbon: A new preparation methodology for high-volumetric capacitance electrode materials. J. Mater. Chem. A 2016, 4, 9832–9843. [Google Scholar] [CrossRef]
- Didziulis, S.V.; Butcher, K.D.; Perry, S.S. Small cluster models of the surface electronic structure and bonding properties of titanium carbide, vanadium carbide, and titanium nitride. Inorg. Chem. 2003, 42, 7766–7781. [Google Scholar] [CrossRef] [PubMed]
- Calais, J.L. Band structure of transition metal compounds. Adv. Phys. 2006, 26, 847–885. [Google Scholar] [CrossRef]
- Dong, S.; Chen, X.; Zhang, X.; Cui, G. Nanostructured transition metal nitrides for energy storage and fuel cells. Coord. Chem. Rev. 2013, 257, 1946–1956. [Google Scholar] [CrossRef]
- Xie, J.; Xie, Y. Transition Metal Nitrides for Electrocatalytic Energy Conversion: Opportunities and Challenges. Chem. Eur. J. 2015, 22, 3588–3598. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Li, X.; Ding, K.; Huang, C.; Li, Q.; Chu, P.K.; Huo, K. Recent progress in nanostructured transition metal nitrides for advanced electrochemical energy storage. J. Mater. Chem. A 2019, 7, 14–37. [Google Scholar] [CrossRef]
- Zheng, D.; Yu, L.; Liu, W.; Dai, X.; Niu, X.; Fu, W.; Shi, W.; Wu, F.; Cao, X. Structural advantages and enhancement strategies of heterostructure water-splitting electrocatalysts. Cell Rep. Phys. Sci. 2021, 2, 100443. [Google Scholar] [CrossRef]
- Zhang, H.; Maijenburg, A.W.; Li, X.; Schweizer, S.L.; Wehrspohn, R.B. Bifunctional Heterostructured Transition Metal Phosphides for Efficient Electrochemical Water Splitting. Adv. Funct. Mater. 2020, 30, 2003261. [Google Scholar] [CrossRef]
- Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460. [Google Scholar] [CrossRef]
- Du, X.; Huang, J.; Zhang, J.; Yan, Y.; Wu, C.; Hu, Y.; Yan, C.; Lei, T.; Chen, W.; Fan, C.; et al. Modulating Electronic Structures of Inorganic Nanomaterials for Efficient Electrocatalytic Water Splitting. Angew. Chem. Int. Ed. 2019, 58, 4484–4502. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Dong, L.; Wu, H.B.; Yu, X.-Y. Tungstate-modulated Ni/Ni(OH)2 interface for efficient hydrogen evolution reaction in neutral media. J. Mater. Chem. A 2021, 9, 1456–1462. [Google Scholar] [CrossRef]
- Di, L.; Zhang, J.; Zhang, X.; Wang, H.; Li, H.; Li, Y.; Bu, D. Cold plasma treatment of catalytic materials: A review. J. Phys. D Appl. Phys. 2021, 54, 333001. [Google Scholar] [CrossRef]
- Gururani, P.; Bhatnagar, P.; Bisht, B.; Kumar, V.; Joshi, N.C.; Tomar, M.S.; Pathak, B. Cold plasma technology: Advanced and sustainable approach for wastewater treatment. Environ. Sci. Pollut. Res. 2021, 28, 65062–65082. [Google Scholar] [CrossRef] [PubMed]
- Kang, Q.; Wang, C.; Niu, F.; Zhou, S.; Xu, J.; Tian, Y. Single-crystalline SiC integrated onto Si-based substrates via plasma-activated direct bonding. Ceram. Int. 2020, 46, 22718–22726. [Google Scholar] [CrossRef]
- Racka-Szmidt, K.; Stonio, B.; Żelazko, J.; Filipiak, M.; Sochacki, M. A Review: Inductively Coupled Plasma Reactive Ion Etching of Silicon Carbide. Materials 2021, 15, 123. [Google Scholar] [CrossRef]
- Seok, H.; Shin, D.; Kim, H.U.; Kim, T. Flexible Sensor Platform: Nano-grain of 2D Heterostructure by Cold-Plasma. In Proceedings of the 2022 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Messina, Italy, 22–24 June 2022; pp. 1–6. [Google Scholar]
- Hong, J.; Park, S.J.; Kim, S. Synthesis and electrochemical characterization of nanostructured Ni-Co-MOF/graphene oxide composites as capacitor electrodes. Electrochim. Acta 2019, 311, 62–71. [Google Scholar] [CrossRef]
- Xiong, D.; He, X.; Liu, X.; Gong, S.; Xu, C.; Tu, Z.; Wu, D.; Wang, J.; Chen, Z. 1D/3D Heterogeneous Assembling Body of Cobalt Nitrides for Highly Efficient Overall Hydrazine Splitting and Supercapacitors. Small 2023, 20, e2306100. [Google Scholar] [CrossRef]
- Jayaramulu, K.; Horn, M.; Schneemann, A.; Saini, H.; Bakandritsos, A.; Ranc, V.; Petr, M.; Stavila, V.; Narayana, C.; Scheibe, B.; et al. Covalent Graphene-MOF Hybrids for High-Performance Asymmetric Supercapacitors. Adv. Mater. 2020, 33, 2004560. [Google Scholar] [CrossRef]
- Xiong, D.; Lu, C.; Chen, C.; Wang, J.; Chen, J.; Yi, F.Y.; Ma, X. The design and fabrication of ultrahigh-performance supercapacitor electrodes from bimetallic PBA/Ni(OH)2/Co3O4/NF quaternary hybrid nanocomposites. Mater. Chem. Front. 2021, 5, 1388–1397. [Google Scholar] [CrossRef]
- Hu, L.; Sun, K.; Peng, Q.; Xu, B.; Li, Y. Surface active sites on Co3O4 nanobelt and nanocube model catalysts for CO oxidation. Nano Res. 2010, 3, 363–368. [Google Scholar] [CrossRef]
- Zhang, L.; Song, H.; Xu, G.; Wang, W.; Yang, L. MOFs derived mesoporous Co3O4 polyhedrons and plates for CO oxidation reaction. J. Solid State Chem. 2019, 276, 87–92. [Google Scholar] [CrossRef]
- Duan, X.; Chen, J.; Xiang, X.; Zhou, A.; Xiao, J.; Wen, J.; Wang, S. Investigation of flow and heat transfer performances of novel water electrolyzer with conductive particles. Int. J. Hydrogen Energy 2024, 61, 188–196. [Google Scholar] [CrossRef]
- Fan, L.; Zhao, J.; Jing, F.; Ma, Z.; Fan, Y.; Qin, X.; Shao, G. Fabrication of oxygen-vacancy abundant MnO2 nanowires@ NiMnxOy-δ nanosheets core-shell heterostructure for capacity supercapacitors. J. Energy Storage 2022, 52, 104845. [Google Scholar] [CrossRef]
- Song, J.; He, B.; Shen, H.; Wu, Z.; Yu, J.; Lei, W.; Xia, X.; Du, P.; Hao, Q. Rational Design of a ZIF-67/Cobalt-Glycolate Heterostructure with Improved Conductivity for High Cycling Stability and High-Capacity Lithium Storage. ChemElectroChem 2021, 8, 2431–2441. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, Z.; Wei, X.; Ali, S.; Lang, J.; Yang, B.; Hu, R.; Qi, J.; Yan, X. Unraveling the improved lithium-storage mechanism by interfacial engineering based on metallic MoS2/MoN heterostructure. J. Alloys Compd. 2023, 966, 171282. [Google Scholar] [CrossRef]
- Ray, C.; Lee, S.C.; Jin, B.; Kundu, A.; Park, J.H.; Chan Jun, S. Conceptual design of three-dimensional CoN/Ni3N-coupled nanograsses integrated on N-doped carbon to serve as efficient and robust water splitting electrocatalysts. J. Mater. Chem. A 2018, 6, 4466–4476. [Google Scholar] [CrossRef]
- Xu, Z.; Li, W.; Yan, Y.; Wang, H.; Zhu, H.; Zhao, M.; Yan, S.; Zou, Z. In-Situ Formed Hydroxide Accelerating Water Dissociation Kinetics on Co3N for Hydrogen Production in Alkaline Solution. ACS Appl. Mater. Interfaces 2018, 10, 22102–22109. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, B.; Sun, C.; Wang, X.; Xu, J.; Cao, Y.; Wu, F.; Singh Rawat, R.; Zhu, J.; Kan, E. Structural control of heterostructured Co3N-Co nano-corals for boosting electrocatalytic hydrogen evolution based on insulator-confined plasma engineering. Chem. Eng. J. 2023, 466, 143211. [Google Scholar] [CrossRef]
- Zhang, Y.; Ouyang, B.; Xu, J.; Jia, G.; Chen, S.; Rawat, R.S.; Fan, H.J. Rapid Synthesis of Cobalt Nitride Nanowires: Highly Efficient and Low-Cost Catalysts for Oxygen Evolution. Angew. Chem. Int. Ed. 2016, 55, 8670–8674. [Google Scholar] [CrossRef]
- Ghosh, S.; Barg, S.; Jeong, S.M.; Ostrikov, K. Heteroatom-Doped and Oxygen-Functionalized Nanocarbons for High-Performance Supercapacitors. Adv. Energy Mater. 2020, 10, 2001239. [Google Scholar] [CrossRef]
- Xiao, K.; Ding, L.X.; Liu, G.; Chen, H.; Wang, S.; Wang, H. Freestanding, Hydrophilic Nitrogen-Doped Carbon Foams for Highly Compressible All Solid-State Supercapacitors. Adv. Mater. 2016, 28, 5997–6002. [Google Scholar] [CrossRef] [PubMed]
- Zhang, E.; Wu, Y.-C.; Shao, H.; Klimavicius, V.; Zhang, H.; Taberna, P.L.; Grothe, J.; Buntkowsky, G.; Xu, F.; Simon, P.; et al. Unraveling the Capacitive Charge Storage Mechanism of Nitrogen-Doped Porous Carbons by EQCM and ssNMR. J. Am. Chem. Soc. 2022, 144, 14217–14225. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, H.; Ma, Y.; Zhang, X.; Zhang, X.; Di, L. Plasma Engineering of Co4N/CoN Heterostructure for Boosting Supercapacitor Performance. Materials 2024, 17, 3529. https://doi.org/10.3390/ma17143529
Li H, Ma Y, Zhang X, Zhang X, Di L. Plasma Engineering of Co4N/CoN Heterostructure for Boosting Supercapacitor Performance. Materials. 2024; 17(14):3529. https://doi.org/10.3390/ma17143529
Chicago/Turabian StyleLi, Hong, Yunzhe Ma, Xulei Zhang, Xiuling Zhang, and Lanbo Di. 2024. "Plasma Engineering of Co4N/CoN Heterostructure for Boosting Supercapacitor Performance" Materials 17, no. 14: 3529. https://doi.org/10.3390/ma17143529
APA StyleLi, H., Ma, Y., Zhang, X., Zhang, X., & Di, L. (2024). Plasma Engineering of Co4N/CoN Heterostructure for Boosting Supercapacitor Performance. Materials, 17(14), 3529. https://doi.org/10.3390/ma17143529