Principles and Methods for Improving the Thermoelectric Performance of SiC: A Potential High-Temperature Thermoelectric Material
Abstract
:1. Introduction
2. Introduction to SiC
3. Methods for Improving Thermoelectric Properties
3.1. Increase in Electrical Conductivity
3.1.1. Element Doping
N-Type Doping
- (1)
- N doping
- (2)
- Fe doping
P-Type Doping
- (1)
- Al doping
- (2)
- Ag doping
Element Co-Doping
3.1.2. Second-Phase Recombination
3.2. Decrease in Thermal Conductivity
- (1)
- Grain-boundary scattering
- (2)
- Phonon–phonon scattering
- (3)
- Point-defect scattering
3.2.1. Porosification
3.2.2. Low Dimensionality
SiC Films
SiC Fibers
3.3. Increase in Seebeck Coefficient
3.3.1. Low Dimensionality
3.3.2. Heterojunction Structure
4. Conclusions and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Firth, A.; Zhang, B.; Yang, A. Quantification of global waste heat and its environmental effects. Appl. Energy 2019, 235, 1314–1334. [Google Scholar] [CrossRef]
- Kalair, A.R.; Seyedmahmoudian, M.; Stojcevski, A.; Abas, N.; Khan, N. Waste to energy conversion for a sustainable future. Heliyon 2021, 7, e08155. [Google Scholar] [CrossRef] [PubMed]
- Quoilin, S. Sustainable Energy Conversion through the Use of Organic Rankine Cycles for Waste Heat Recovery and Solar Applications. Ph.D. Thesis, University of Liège, Liège, Belgium, 2011. [Google Scholar]
- Hu, C.; Xia, K.; Fu, C.; Zhao, X.; Zhu, T. Carrier grain boundary scattering in thermoelectric materials. Energy Environ. Sci. 2022, 15, 1406–1422. [Google Scholar] [CrossRef]
- Snyder, G.J.; Toberer, E.S. Complex thermoelectric materials. Nat. Mater. 2008, 7, 105–114. [Google Scholar] [CrossRef] [PubMed]
- Li, J.-F.; Liu, W.-S.; Zhao, L.-D.; Zhou, M. High-performance nanostructured thermoelectric materials. NPG Asia Mater. 2010, 2, 152–158. [Google Scholar] [CrossRef]
- Caballero-Calero, O.; Ares, J.R.; Martín-González, M. Environmentally friendly thermoelectric materials: High performance from inorganic components with low toxicity and abundance in the earth. Adv. Sustain. Syst. 2021, 5, 2100095. [Google Scholar] [CrossRef]
- Chen, X.; Dai, W.; Wu, T.; Luo, W.; Yang, J.; Jiang, W.; Wang, L. Thin film thermoelectric materials: Classification, characterization, and potential for wearable applications. Coatings 2018, 8, 244. [Google Scholar] [CrossRef]
- Gayner, C.; Kar, K.K. Recent advances in thermoelectric materials. Prog. Mater. Sci. 2016, 83, 330–382. [Google Scholar] [CrossRef]
- Li, Z.; Xiao, C.; Xie, Y. Layered thermoelectric materials: Structure, bonding, and performance mechanisms. Appl. Phys. Rev. 2022, 9, 011303. [Google Scholar] [CrossRef]
- Tritt, T.M. Thermoelectric phenomena, materials, and applications. Annu. Rev. Mater. Res. 2011, 41, 433–448. [Google Scholar] [CrossRef]
- Yang, J.; Caillat, T. Thermoelectric materials for space and automotive power generation. MRS Bull. 2006, 31, 224–229. [Google Scholar] [CrossRef]
- Terasaki, I. Large thermoelectoric power in NaCoO_4 single crystal. Phys. Rev. B 1997, 56, 685–687. [Google Scholar] [CrossRef]
- Ohtaki, M. Recent aspects of oxide thermoelectric materials for power generation from mid-to-high temperature heat source. J. Ceram. Soc. Jpn. 2011, 119, 770–775. [Google Scholar] [CrossRef]
- Wolf, M.; Hinterding, R.; Feldhoff, A. High power factor vs. high zT—A review of thermoelectric materials for high-temperature application. Entropy 2019, 21, 1058. [Google Scholar] [CrossRef]
- Wang, Y.; Zhou, C.; Elquist, A.M.; Ghods, A.; Saravade, V.G.; Lu, N.; Ferguson, I. A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications. Oxide-Based Mater. Devices IX 2018, 10533, 163–179. [Google Scholar]
- Kumar, A.; Singh, S.; Patel, A.; Asokan, K.; Kanjilal, D. Thermoelectric properties of GaN with carrier concentration modulation: An experimental and theoretical investigation. Phys. Chem. Chem. Phys. 2021, 23, 1601–1609. [Google Scholar] [CrossRef] [PubMed]
- Koumoto, K.; Shimohigoshi, M.; Takeda, S.; Yanagida, H. Thermoelectric energy conversion by porous SiC ceramics. J. Mater. Sci. Lett. 1987, 6, 1453–1455. [Google Scholar] [CrossRef]
- Ju, H.; Kim, J. Effect of SiC ceramics on thermoelectric properties of SiC/SnSe composites for solid-state thermoelectric applications. Ceram. Int. 2016, 42, 9550–9556. [Google Scholar] [CrossRef]
- Lankau, V.; Martin, H.-P.; Hempel-Weber, R.; Oeschler, N.; Michaelis, A. Preparation and thermoelectric characterization of SiC-B 4 C composites. J. Electron. Mater. 2010, 39, 1809–1813. [Google Scholar] [CrossRef]
- Li, J.; Tan, Q.; Li, J.F.; Liu, D.W.; Li, F.; Li, Z.Y.; Zou, M.; Wang, K. BiSbTe-based nanocomposites with high ZT: The effect of SiC nanodispersion on thermoelectric properties. Adv. Funct. Mater. 2013, 23, 4317–4323. [Google Scholar] [CrossRef]
- Han, X.-Y.; Wang, J.; Cheng, H.-F. Investigation of thermoelectric SiC ceramics for energy harvesting applications on supersonic vehicles leading–edges. Bull. Mater. Sci. 2014, 37, 127–132. [Google Scholar] [CrossRef]
- Grasso, S.; Saunders, T.; Porwal, H.; Milsom, B.; Tudball, A.; Reece, M. Flash spark plasma sintering (FSPS) of α and β SiC. J. Am. Ceram. Soc. 2016, 99, 1534–1543. [Google Scholar] [CrossRef]
- Xie, R.J.; Mitomo, M.; Kim, W.; Kim, Y.W.; Zhan, G.D.; Akimune, Y. Phase Transformation and Texture in Hot-Forged or Annealed Liquid-Phase-Sintered Silicon Carbide Ceramics. J. Am. Ceram. Soc. 2002, 85, 459–465. [Google Scholar] [CrossRef]
- Xu, H.; Bhatia, T.; Deshpande, S.A.; Padture, N.P.; Ortiz, A.L.; Cumbrera, F.L. Microstructural evolution in liquid-phase-sintered SiC: Part I, effect of starting powder. J. Am. Ceram. Soc. 2001, 84, 1578–1584. [Google Scholar] [CrossRef]
- Shen, Z.; Chen, J.; Li, B.; Li, G.; Zhang, Z.; Hou, X. Recent progress in SiC nanowires as electromagnetic microwaves absorbing materials. J. Alloys Compd. 2020, 815, 152388. [Google Scholar] [CrossRef]
- Abderrazak, H.; Hmida, E. Silicon carbide: Synthesis and properties. In Properties and Applications of Silicon Carbide; IntechOpen: London, UK, 2011; pp. 361–388. [Google Scholar]
- Zolper, J.C.; Skowronski, M. Advances in silicon carbide electronics. MRS Bull. 2005, 30, 273–278. [Google Scholar] [CrossRef]
- Perlado, J. Behavior and computer simulation of SiC under irradiation with energetic particles. J. Nucl. Mater. 1997, 251, 98–106. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Kim, Y.-H.; Kim, K.J. Electrical properties of liquid-phase sintered silicon carbide ceramics: A review. Crit. Rev. Solid State Mater. Sci. 2020, 45, 66–84. [Google Scholar] [CrossRef]
- Lunn, B.; Unsworth, J.; Booth, N.; Innis, P. Determination of the thermal conductivity of polypyrrole over the temperature range 280–335 K. J. Mater. Sci. 1993, 28, 5092–5098. [Google Scholar] [CrossRef]
- Mateeva, N.; Niculescu, H.; Schlenoff, J.; Testardi, L. Correlation of Seebeck coefficient and electric conductivity in polyaniline and polypyrrole. J. Appl. Phys. 1998, 83, 3111–3117. [Google Scholar] [CrossRef]
- Yang, J.; Yip, H.L.; Jen, A.K.Y. Rational design of advanced thermoelectric materials. Adv. Energy Mater. 2013, 3, 549–565. [Google Scholar] [CrossRef]
- Su, X.; Wei, P.; Li, H.; Liu, W.; Yan, Y.; Li, P.; Su, C.; Xie, C.; Zhao, W.; Zhai, P. Multi-Scale Microstructural Thermoelectric Materials: Transport Behavior, Non-Equilibrium Preparation, and Applications. Adv. Mater. 2017, 29, 1602013. [Google Scholar] [CrossRef] [PubMed]
- Fu, C.; Wu, H.; Liu, Y.; He, J.; Zhao, X.; Zhu, T. Enhancing the figure of merit of heavy-band thermoelectric materials through hierarchical phonon scattering. Adv. Sci. 2016, 3, 1600035. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Feng, Z.; Yao, H.; Cao, F.; Lei, B.-H.; Wang, Y.; Chen, Y.; Singh, D.J.; Zhang, Q. Intrinsic nanostructure induced ultralow thermal conductivity yields enhanced thermoelectric performance in Zintl phase Eu2ZnSb2. Nat. Commun. 2021, 12, 5718. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Xiao, C.; Zhu, H.; Xie, Y. Defect chemistry for thermoelectric materials. J. Am. Chem. Soc. 2016, 138, 14810–14819. [Google Scholar] [CrossRef]
- Tan, Q.; Zhao, L.-D.; Li, J.-F.; Wu, C.-F.; Wei, T.-R.; Xing, Z.-B.; Kanatzidis, M.G. Thermoelectrics with earth abundant elements: Low thermal conductivity and high thermopower in doped SnS. J. Mater. Chem. A 2014, 2, 17302–17306. [Google Scholar] [CrossRef]
- Kultayeva, S.; Kim, Y.-W.; Song, I.-H. Effects of dopants on electrical, thermal, and mechanical properties of porous SiC ceramics. J. Eur. Ceram. Soc. 2021, 41, 4006–4015. [Google Scholar] [CrossRef]
- Kim, Y.-W.; Cho, T.-Y.; Kim, K.J. Effect of grain growth on electrical properties of silicon carbide ceramics sintered with gadolinia and yttria. J. Eur. Ceram. Soc. 2015, 35, 4137–4142. [Google Scholar] [CrossRef]
- Kitagawa, H.; Kado, N.; Noda, Y. Preparation of N-type silicon carbide-based thermoelectric materials by spark plasma sintering. Mater. Trans. 2002, 43, 3239–3241. [Google Scholar] [CrossRef]
- Noda, Y.; Kitagawa, H.; Kado, N.; Ueda, Y.; Kanayama, N. Preparation of SiC-based thermoelectric device by spark plasma sintering. Mater. Sci. Forum 2003, 423–425, 355–358. [Google Scholar] [CrossRef]
- Kado, N.; Kitagawa, H.; Ueda, Y.; Kanayama, N.; Noda, Y. Preparation of p-and n-type SiC-based thermoelectric materials by spark plasma sintering. In Proceedings of the Twenty-First International Conference on Thermoelectrics, Long Beach, CA, USA, 29 August 2002; pp. 163–165. [Google Scholar]
- Inai, H.; Satoh, Y.; Okamoto, Y.; Morimoto, J. Thermoelectric properties of Fe doped SiC ceramics. J. Adv. Sci. 1999, 11, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.Y.; Liang, L.M.; Liu, H.Y.; Liu, C.C.; Li, Y. The magnetism driven by vacancies in Fe-doped 6H-SiC: A first-principles calculation. Phys. B Condens. Matter 2020, 587, 412109. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, F.; Zhang, Z.; Lu, S.; Yang, Y. Electronic structure and magnetism of Fe-doped SiC nanotubes. Sci. China Phys. Mech. Astron. 2010, 53, 1582–1589. [Google Scholar] [CrossRef]
- Alam, K.; Ray, A. An ab initio study of the interaction of transition metal atoms with single-wall armchair SiC nanotubes. In Proceedings of the American Physical Society, 2008 APS March Meeting, Louisiana, NO, USA, 10–14 March 2008; Volume 53. [Google Scholar]
- Shlimak, I.; Efros, A.; Yanchev, I.Y. Sov. Phys. Semicond. Sov. Phys. Semicond. 1977, 11, 149. [Google Scholar]
- Hsu, C.-H.; Lin, W.-H.; Ozolins, V.; Chuang, F.-C. Electronic structures of an epitaxial graphene monolayer on SiC (0001) after metal intercalation (metal = Al, Ag, Au, Pt, and Pd): A first-principles study. Appl. Phys. Lett. 2012, 100, 063115. [Google Scholar] [CrossRef]
- Peyghan, A.A.; Soleymanabadi, H.; Bagheri, Z. Theoretical study of carbonyl sulfide adsorption on Ag-doped SiC nanotubes. J. Iran. Chem. Soc. 2015, 12, 1071–1076. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2004; Volume 85. [Google Scholar]
- Kato, K.; Asai, K.; Okamoto, Y.; Morimoto, J.; Miyakawa, T. Temperature and porosity dependence of the thermoelectric properties of SiC/Ag sintered materials. J. Mater. Res. 1999, 14, 1752–1759. [Google Scholar] [CrossRef]
- Pai, C.-H. Thermoelectric properties of aluminum compound-doped α-SiC ceramics. J. Ceram. Soc. Jpn. 2014, 122, 870–875. [Google Scholar] [CrossRef]
- Kobayashi, R.; Tatami, J.; Wakihara, T.; Meguro, T.; Komeya, K. Electrical properties of AlN-SiC ceramics. Key Eng. Mater. 2006, 317, 641–644. [Google Scholar] [CrossRef]
- Uehara, M.; Shiraishi, R.; Nogami, A.; Enomoto, N.; Hojo, J. SiC–B4C composites for synergistic enhancement of thermoelectric property. J. Eur. Ceram. Soc. 2004, 24, 409–412. [Google Scholar] [CrossRef]
- Inai, H.; Okamoto, Y.; Morimoto, J. Thermoelectric properties of sintered SiC doped with Ge. Mater. Sci. Forum 1999, 308, 659–664. [Google Scholar] [CrossRef]
- Amarnath, R.; Bhargavi, K.; Kubakaddi, S. Validity of Wiedemann-Franz law in 3D Dirac semimetal. AIP Conf. Proc. 2020, 2265, 030430. [Google Scholar]
- Wan, C.; Wang, Y.; Wang, N.; Norimatsu, W.; Kusunoki, M.; Koumoto, K. Development of novel thermoelectric materials by reduction of lattice thermal conductivity. Sci. Technol. Adv. Mater. 2010, 11, 044306. [Google Scholar] [CrossRef] [PubMed]
- Balandin, A.; Wang, K.L. Effect of phonon confinement on the thermoelectric figure of merit of quantum wells. J. Appl. Phys. 1998, 84, 6149–6153. [Google Scholar] [CrossRef]
- Biswas, K.; He, J.; Zhang, Q.; Wang, G.; Uher, C.; Dravid, V.P.; Kanatzidis, M.G. Strained endotaxial nanostructures with high thermoelectric figure of merit. Nat. Chem. 2011, 3, 160–166. [Google Scholar] [CrossRef] [PubMed]
- Ioffe, A.; Ioffe, A. Some relationships about the value of the thermal conductivity of semiconductors. Dokl. Akad. Nauk SSSR 1954, 97, 821. [Google Scholar]
- Keyes, R.W. High-temperature thermal conductivity of insulating crystals: Relationship to the melting point. Phys. Rev. 1959, 115, 564. [Google Scholar] [CrossRef]
- Goldsmid, H.J. Improving the thermoelectric figure of merit. Sci. Technol. Adv. Mater. 2021, 22, 280–284. [Google Scholar] [CrossRef]
- Xiao, C.; Li, Z.; Li, K.; Huang, P.; Xie, Y. Decoupling interrelated parameters for designing high performance thermoelectric materials. Acc. Chem. Res. 2014, 47, 1287–1295. [Google Scholar] [CrossRef]
- Chae, K.; Kang, S.-H.; Choi, S.-M.; Kim, D.Y.; Son, Y.-W. Enhanced thermoelectric properties in a new silicon crystal Si24 with intrinsic nanoscale porous structure. Nano Lett. 2018, 18, 4748–4754. [Google Scholar] [CrossRef]
- Giulia, P. Thermoelectric materials: The power of pores. Nat. Rev. Mater. 2017, 2, 17006. [Google Scholar] [CrossRef]
- Jin, R.; Chen, G.; Pei, J. PbS/PbSe hollow spheres: Solvothermal synthesis, growth mechanism, and thermoelectric transport property. J. Phys. Chem. C 2012, 116, 16207–16216. [Google Scholar] [CrossRef]
- Qiao, J.; Zhao, Y.; Jin, Q.; Tan, J.; Kang, S.; Qiu, J.; Tai, K. Tailoring nanoporous structures in Bi2Te3 thin films for improved thermoelectric performance. ACS Appl. Mater. Interfaces 2019, 11, 38075–38083. [Google Scholar] [CrossRef]
- Wei, W.; Li, J.-w.; Zhang, H.-t.; Cao, X.-m.; Tian, C.; Zhang, J.-s. Macrostructural influence on the thermoelectric properties of SiC ceramics. Scr. Mater. 2007, 57, 1081–1084. [Google Scholar] [CrossRef]
- Mallick, D.; Chakrabarti, O.; Bhattacharya, D.; Mukherjee, M.; Maiti, H.S.; Majumdar, R. Electrical conductivity of cellular Si/SiC ceramic composites prepared from plant precursors. J. Appl. Phys. 2006, 101, 033707. [Google Scholar] [CrossRef]
- Antonio, B.M.; Mena, R.; Toro, J.E. Electrical Conductivity of SiC/Si Composites Obtained from Wood Preforms. Z. Naturforsch. A 2011, 66, 134–138. [Google Scholar]
- Maeda, E.; Komatsu, M.; Tani, E.; Tateyama, H. Thermoelectric Properties of β-SiC Fabricated from Rice Hulls in a Nitrogen Atmosphere. J. Ceram. Soc. Jpn. 2002, 110, 804–806. [Google Scholar] [CrossRef]
- Fujisawa, M.; Hata, T.; Bronsveld, P.; Castro, V.; Tanaka, F.; Kikuchi, H.; Imamura, Y. Thermoelectric properties of SiC/C composites from wood charcoal by pulse current sintering. J. Eur. Ceram. Soc. 2005, 25, 2735–2738. [Google Scholar] [CrossRef]
- Hicks, L.D.; Dresselhaus, M.S. Use of Quantum-Well Superlattices to Obtain a High Figure of Merit from Nonconventional Thermoelectric Materials. MRS Proc. 1993, 326, 413–418. [Google Scholar] [CrossRef]
- Lei, M.I.; Mehregany, M. Characterization of thermoelectric properties of heavily doped n-Type polycrystalline silicon carbide thin films. IEEE Trans. Electron Devices 2012, 60, 513–517. [Google Scholar] [CrossRef]
- Choi, S.R.; Kim, D.; Choa, S.-H.; Lee, S.-H.; Kim, J.-K. Thermal conductivity of AlN and SiC thin films. Int. J. Thermophys. 2006, 27, 896–905. [Google Scholar] [CrossRef]
- Nakano, H.; Watari, K.; Kinemuchi, Y.; Ishizaki, K.; Urabe, K. Microstructural characterization of high-thermal-conductivity SiC ceramics. J. Eur. Ceram. Soc. 2004, 24, 3685–3690. [Google Scholar] [CrossRef]
- Papanikolaou, N. Lattice thermal conductivity of SiC nanowires. J. Phys. Condens. Matter 2008, 20, 135201. [Google Scholar] [CrossRef]
- Valentín, L.; Betancourt, J.; Fonseca, L.; Pettes, M.; Shi, L.; Soszyński, M.; Huczko, A. A comprehensive study of thermoelectric and transport properties of β-silicon carbide nanowires. J. Appl. Phys. 2013, 114, 184301. [Google Scholar] [CrossRef]
- Abu-Ageel, N.; Aslam, M.; Ager, R.; Rimai, L. The Seebeck coefficient of monocrystalline-SiC and polycrystalline-SiC measured at 300–533 K. Semicond. Sci. Technol. 2000, 15, 32. [Google Scholar] [CrossRef]
- Li, J.; Porter, L.; Yip, S. Atomistic modeling of finite-temperature properties of crystalline β-SiC: II. Thermal conductivity and effects of point defects. J. Nucl. Mater. 1998, 255, 139–152. [Google Scholar] [CrossRef]
- Lee, K.-M.; Lee, S.-K.; Choi, T.-Y. Highly enhanced thermoelectric figure of merit of a β-SiC nanowire with a nanoelectromechanical measurement approach. Appl. Phys. A 2012, 106, 955–960. [Google Scholar] [CrossRef]
- Venkatasubramanian, R.; Siivola, E.; Colpitts, T.; O’quinn, B. Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 2001, 413, 597–602. [Google Scholar] [CrossRef]
- Caylor, J.C.; Coonley, K.; Stuart, J.; Colpitts, T.; Venkatasubramanian, R. Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity. Appl. Phys. Lett. 2005, 87, 023105. [Google Scholar] [CrossRef]
- Harman, T.; Taylor, P.; Walsh, M.; LaForge, B. Quantum dot superlattice thermoelectric materials and devices. Science 2002, 297, 2229–2232. [Google Scholar] [CrossRef]
- Harman, T.; Taylor, P.; Spears, D.; Walsh, M. Thermoelectric quantum-dot superlattices with high ZT. J. Electron. Mater. 2000, 29, L1–L2. [Google Scholar] [CrossRef]
- An, T.-H.; Lim, Y.S.; Park, M.J.; Tak, J.-Y.; Lee, S.; Cho, H.K.; Cho, J.-Y.; Park, C.; Seo, W.-S. Composition-dependent charge transport and temperature-dependent density of state effective mass interpreted by temperature-normalized Pisarenko plot in Bi2−xSbxTe3 compounds. APL Mater. 2016, 4, 104812. [Google Scholar] [CrossRef]
- Heremans, J.P.; Wiendlocha, B.; Chamoire, A.M. Resonant levels in bulk thermoelectric semiconductors. Energy Environ. Sci. 2012, 5, 5510–5530. [Google Scholar] [CrossRef]
- Lee, J.-H.; Wu, J.; Grossman, J.C. Enhancing the thermoelectric power factor with highly mismatched isoelectronic doping. Phys. Rev. Lett. 2010, 104, 016602. [Google Scholar] [CrossRef] [PubMed]
- Pei, Y.; Shi, X.; LaLonde, A.; Wang, H.; Chen, L.; Snyder, G.J. Convergence of electronic bands for high performance bulk thermoelectrics. Nature 2011, 473, 66–69. [Google Scholar] [CrossRef]
- Zhou, J.; Li, X.; Chen, G.; Yang, R. Semiclassical model for thermoelectric transport in nanocomposites. Phys. Rev. B—Condens. Matter Mater. Phys. 2010, 82, 115308. [Google Scholar] [CrossRef]
- Paul, B.; Banerji, P. Embedded Ag-rich nanodots in PbTe: Enhancement of thermoelectric properties through energy filtering of the carriers. J. Appl. Phys. 2010, 108, 064322. [Google Scholar] [CrossRef]
- Dresselhaus, M.S.; Chen, G.; Tang, M.Y.; Yang, R.; Lee, H.; Wang, D.; Ren, Z.; Fleurial, J.P.; Gogna, P. New directions for low-dimensional thermoelectric materials. Adv. Mater. 2007, 19, 1043–1053. [Google Scholar] [CrossRef]
- Guan, X.; Ouyang, J. Enhancement of the Seebeck coefficient of organic thermoelectric materials via energy filtering of charge carriers. CCS Chem. 2021, 3, 2415–2427. [Google Scholar] [CrossRef]
- Hicks, L.D.; Dresselhaus, M.S. Effect of quantum-well structures on the thermoelectric figure of merit. Phys. Rev. B—Condens. Matter Mater. Phys. 1993, 47, 12727. [Google Scholar] [CrossRef]
- Rao, A.M.; Ji, X.; Tritt, T.M. Properties of Nanostructured One-Dimensional and Composite Thermoelectric Materials. MRS Bull. 2006, 31, 218–223. [Google Scholar] [CrossRef]
- Wang, X.; Yamamoto, A.; Eguchi, K.; Obara, H.; Yoshida, T. Thermoelectric properties of SiC thick films deposited by thermal plasma physical vapor deposition. Sci. Technol. Adv. Mater. 2003, 4, 167. [Google Scholar] [CrossRef]
- Hou, Q.; Gu, B.; Chen, Y. Preparation of Nanocrystalline Silicon Carbide Films with High Seebeck Coefficient and Low Resistivity. Nano 2011, 6, 167–171. [Google Scholar] [CrossRef]
- Geim, A.K.; Grigorieva, I.V. Van der Waals heterostructures. Nature 2013, 499, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Hady, D.A.; Soliman, H.; El-Shazly, A.; Mahmoud, M. Electrical properties of SnSe2 thin films. Vacuum 1999, 52, 375–381. [Google Scholar] [CrossRef]
- Hsu, L.; Walukiewicz, W. Effect of polarization fields on transport properties in AlGaN/GaN heterostructures. J. Appl. Phys. 2001, 89, 1783–1789. [Google Scholar] [CrossRef]
- Buongiorno Nardelli, M.; Rapcewicz, K.; Bernholc, J. Polarization field effects on the electron-hole recombination dynamics in In 0.2 Ga 0.8 N/In 1−x Ga x N multiple quantum wells. Appl. Phys. Lett. 1997, 71, 3135–3137. [Google Scholar] [CrossRef]
- Xu, X.; Chen, J.; Zhou, J.; Li, B. Thermal conductivity of polymers and their nanocomposites. Adv. Mater. 2018, 30, 1705544. [Google Scholar] [CrossRef]
- Chen, Y.; He, M.; Liu, B.; Bazan, G.C.; Zhou, J.; Liang, Z. Bendable n-type metallic nanocomposites with large thermoelectric power factor. Adv. Mater. 2017, 29, 1604752. [Google Scholar] [CrossRef]
- Zhang, Y.; Lin, N.; Li, Y.; Wang, X.; Wang, H.; Kang, J.; Wilks, R.; Bär, M.; Mu, R. The isotype ZnO/SiC heterojunction prepared by molecular beam epitaxy–A chemical inert interface with significant band discontinuities. Sci. Rep. 2016, 6, 23106. [Google Scholar] [CrossRef]
- Guzman, P.; Dinh, T.; Nguyen, T.; Foisal, A.R.M.; Nguyen, H.; Vu, H.; Nguyen, T.-K.; Phan, H.-P.; Li, H.; Nguyen, N.-T. Seebeck coefficient in SiC/Si heterojunction for self-powered thermal sensor. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar]
- Zeng, J.; He, X.; Liang, S.-J.; Liu, E.; Sun, Y.; Pan, C.; Wang, Y.; Cao, T.; Liu, X.; Wang, C. Experimental identification of critical condition for drastically enhancing thermoelectric power factor of two-dimensional layered materials. Nano Lett. 2018, 18, 7538–7545. [Google Scholar] [CrossRef] [PubMed]
- Cramer, C.L.; Farnell, C.C.; Farnell, C.C.; Geiss, R.H.; Williams, J.D. Thermoelectric Properties and Morphology of Si/SiC Thin-Film Multilayers Grown by Ion Beam Sputtering. Coatings 2018, 8, 109. [Google Scholar] [CrossRef]
- Cramer, C.L. Thermoelectric Properties of Si/SiC Thin-Film Superlattices Grown by Ion Beam Sputtering. Master’s Thesis, Colorado State University, Fort Collins, CO, USA, 2015. [Google Scholar]
- Maeda, M.; Nakamura, K.; Yamada, M. Oxidation resistance evaluation of silicon carbide ceramics with various additives. J. Am. Ceram. Soc. 1989, 72, 512–514. [Google Scholar] [CrossRef]
- She, J.; Ueno, K. Effect of additive content on liquid-phase sintering on silicon carbide ceramics. Mater. Res. Bull. 1999, 34, 1629–1636. [Google Scholar] [CrossRef]
- Yu, J.; Freer, R. Calcium cobaltite, a promising oxide for energy harvesting: Effective strategies toward enhanced thermoelectric performance. J. Phys. Energy 2022, 4, 022001. [Google Scholar] [CrossRef]
Property | 6H-SiC | 4H-SiC | 3C-SiC |
---|---|---|---|
Crystal structure | Hexagonal | Hexagonal | Cubic |
Band gap | 3.0 eV | 3.2 eV | 2.3 eV |
Lattice parameter | a = 0.3073 nm c = 1.5118 nm | a = 0.3073 nm c = 1.0053 nm | a = 0.4349 nm |
Intrinsic carrier concentration at 300 K | 10−5 cm−3 | 10−7 cm−3 | 10 cm−3 |
Saturated electron velocity | 2.0 × 107 cm/s | 2.5 × 107 cm/s | 2.0 × 107 cm/s |
Dielectric constant | 9.7 | 9.7 | 9.7 |
Thermal conductivity | 300–500 W/mK | 300–500 W/mK | 300–500 W/mK |
Dopants | Sintering Method | Doping Amount | κ (W/mK) | n (m−3) | ρ (Ω·m) | S (μV/K) | PF (W/mK2) | Z (K−1) | |
---|---|---|---|---|---|---|---|---|---|
Comparison of Al-doped and N-doped SiC under the same conditions | Al4C3 [42,43] | SPS | 3~10 wt% | 7.6 × 1024 | 2 × 10−5 | ||||
Si3N4 [41,42,43] | 1.7 × 1026 | 3.3 × 10−6 | −150 | 1.5 × 10−4 | |||||
Comparison of co-doping and single-element doping | AlN [53] | Atmospheric pressure sintering | 0.5 wt%, 1 wt%, 3 wt%, 5 wt% | 8.5 | 1 × 10−4 | 525 | 10−5 | ||
Al4C3 [53] | 8 | 10−5.2 | 400 | 10−5 | |||||
N-type doping | Fe [44] | RF induction heating | 1~20 wt% | 16.5 | 1.8 × 10−4 | −390 | 10−5 | ||
P-type doping | Ag [52] | Atmospheric pressure sintering | 0.5~5 wt% | 10−3 | 2.3 × 1026 | 5.6 × 10−5 | 4 × 10−4 | ||
Second-phase recombination | Ge [56] | RF induction heating | 1~40 wt% | 8 | 5 × 10−4 | 900 | 2 × 10−5 |
Material | Thickness | Deposition Method | κ (W/mK) |
---|---|---|---|
Poly-SiC film [75] (N doped) | 0.93 μm | LPCVD | 64 |
SiC film [76] | 0.498 μm | RF sputtering | 1.44 |
SiC bulk [77] | 10 cm | Hot-press sintering | 270 |
Dimension | Dopant | Sintering Method | κ (W/mK) | ZT |
---|---|---|---|---|
3D | SiC bulk [69] | Hot-press sintering | 120 | 3.65 × 10−5 |
SiC foam [69] | Macromolecule pyrogenation combined with reaction bonding | 30 | 1.338 × 10−4 | |
2D | Poly-SiC film [75] | LPCVD | 64 | 4.6 × 10−6 |
SiC film [76] | RF sputtering | 1.44 | ||
1D | SiC nanowire [79] | Combustion in a calorimetric bomb | 4–12 | 3.01 × 10−3–8.75 × 10−4 |
SiC nanowire [82] | CVD | 86.5 ± 3.5 | 0.12 |
Dopant | ρ (Ω·m) | S (μV/K) | PF (W/mK2) | ZT |
---|---|---|---|---|
Unadulterated | 10−2 to 10−3 | −480 | 1.6 × 10−4 | 0.01946 |
N2 doping | 10−4 to 10−5 | 1 × 10−3 | 0.121625 | |
B doping | 1.65 × 10−4 | 0.020433 | ||
B4C doping | 541 | 1.49 × 10−4 | 0.018487 |
Substrate | ρ (Ω·m) | n (cm−3) | S (μV/K) | κ (W/mK) | ZT |
---|---|---|---|---|---|
Quartz | 3.4 × 10−2 | −3.2 × 1017 | −2600 | 2 | 0.08 |
Mullite | −3.3 × 1015 | −2300 | 0.07 | ||
Si | Electrical tests cannot be performed |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xing, Y.; Ren, B.; Li, B.; Chen, J.; Yin, S.; Lin, H.; Liu, J.; Chen, H. Principles and Methods for Improving the Thermoelectric Performance of SiC: A Potential High-Temperature Thermoelectric Material. Materials 2024, 17, 3636. https://doi.org/10.3390/ma17153636
Xing Y, Ren B, Li B, Chen J, Yin S, Lin H, Liu J, Chen H. Principles and Methods for Improving the Thermoelectric Performance of SiC: A Potential High-Temperature Thermoelectric Material. Materials. 2024; 17(15):3636. https://doi.org/10.3390/ma17153636
Chicago/Turabian StyleXing, Yun, Bo Ren, Bin Li, Junhong Chen, Shu Yin, Huan Lin, Jie Liu, and Haiyang Chen. 2024. "Principles and Methods for Improving the Thermoelectric Performance of SiC: A Potential High-Temperature Thermoelectric Material" Materials 17, no. 15: 3636. https://doi.org/10.3390/ma17153636
APA StyleXing, Y., Ren, B., Li, B., Chen, J., Yin, S., Lin, H., Liu, J., & Chen, H. (2024). Principles and Methods for Improving the Thermoelectric Performance of SiC: A Potential High-Temperature Thermoelectric Material. Materials, 17(15), 3636. https://doi.org/10.3390/ma17153636