Ultrasonic Welding of Acrylonitrile–Butadiene–Styrene Thermoplastics without Energy Directors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Laminate
2.2. Ultrasonic Welding
2.3. Characterization
2.4. Rheological Experiment
3. Modelling
3.1. Material Property
3.2. Finite Element Modelling
4. Results and Discussion
4.1. The Joint Strength of Ultrasonically Welded ABS
4.2. Microstructure of the Joint
4.3. Simulation of the USW Process
4.3.1. Heat Generation
4.3.2. The Weld Formation Mechanism
5. Conclusions
- (1)
- The peak load of ultrasonically welded ABS increased with the welding time (less than 1.3 s) and then decreased with a prolonged welding time. The maximum value of 3.4 kN was obtained with an optimal welding time of 1.3 s and 0.13 MPa.
- (2)
- On prolonging the welding time to 1.7 s, the weld areas of joints increased gradually to the maximum value and then reached a plateau. Two typical failure modes of interfacial failure and workpiece breakage appeared during tensile tests.
- (3)
- Integrating real-time horn displacement into the finite element model can improve simulation accuracy in the USW of ABS.
- (4)
- Weld formation of ultrasonically welded ABS without ED (welding time of 1.7 s) consisted of five distinct phases of weld initiation, horn retraction, melt and flow equilibrium, horn indentation and squeeze out, weld solidification based on the variation characteristics, horn displacement and energy dissipation during welding.
- (5)
- An obvious porous area emerged in the joint made with a welding time greater than 1.3 s, which was mainly ascribed to the thermal decomposition of ABS and was detrimental to the joint strength.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Quan, D.; Ma, Y.; Yue, D.; Liu, J.; Xing, J.; Zhang, M.; Alderliesten, R.; Zhao, G. On the application of strong thermoplastic–thermoset interactions for developing advanced aerospace-composite joints. Thin Walled Struct. 2023, 186, 110671. [Google Scholar] [CrossRef]
- Arif, M.; Kumar, D.; Siddiquee, A.N. Morphological and Mechanical Characterization of Friction Stir Welded Zones in Acrylonitrile Butadiene Styrene (ABS) Polymer. J. Mater. Eng. Perform. 2023, 1–11. [Google Scholar] [CrossRef]
- Deng, S.; Djukic, L.; Paton, R.; Ye, L. Thermoplastic–epoxy interactions and their potential applications in joining composite structures–A review. Compos. Part A Appl. Sci. Manuf. 2015, 68, 121–132. [Google Scholar] [CrossRef]
- Wang, Y.; Rao, Z.; Liao, S.; Wang, F. Ultrasonic welding of fiber reinforced thermoplastic composites: Current understanding and challenges. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106578. [Google Scholar] [CrossRef]
- Tao, W.; Su, X.; Wang, H.; Zhang, Z.; Li, H.; Chen, J. Influence mechanism of welding time and energy director to the thermoplastic composite joints by ultrasonic welding. J. Manuf. Process. 2019, 37, 196–202. [Google Scholar]
- Gao, Y.-H.; Zhi, Q.; Lu, L.; Liu, Z.-X.; Wang, P.-C. Ultrasonic welding of carbon fiber reinforced nylon 66 composite without energy director. J. Manuf. Sci. Eng. 2018, 140, 051009. [Google Scholar] [CrossRef]
- Zhi, Q.; Tan, X.; Liu, Z. Effects of preheat treatment on the ultrasonic welding of carbon-fiber-reinforced polyamide 66 composite. Weld J. 2017, 96, 429S–438S. [Google Scholar]
- Wang, K.; Li, Y.; Banu, M.; Li, J.; Guo, W.; Khan, H. Effect of interfacial preheating on welded joints during ultrasonic composite welding. J. Mater. Process. Technol. 2017, 246, 116–122. [Google Scholar]
- Li, Y.; Liu, Z.; Shen, J.; Lee, T.H.; Banu, M.; Hu, S.J. Weld quality prediction in ultrasonic welding of carbon fiber composite based on an ultrasonic wave transmission model. J. Manuf. Sci. Eng. 2019, 141, 081010. [Google Scholar] [CrossRef]
- Tian, Z.; Zhi, Q.; Feng, X.; Zhang, G.; Li, Y.; Liu, Z. Effect of preload on the weld quality of ultrasonic welded carbon-fiber-reinforced nylon 6 composite. Polymers 2022, 14, 2650. [Google Scholar] [CrossRef]
- Li, Y.; Arinez, J.; Liu, Z.; Lee, T.H.; Fan, H.-T.; Xiao, G.; Banu, M.; Hu, S.J. Ultrasonic welding of carbon fiber reinforced composite with variable blank holding force. J. Manuf. Sci. 2018, 140, 091011. [Google Scholar] [CrossRef]
- Zhi, Q.; Li, Y.; Shu, P.; Tan, X.; Tan, C.; Liu, Z. Double-pulse ultrasonicwelding of carbon-fiber-reinforced polyamide 66 composite. Polymers 2022, 14, 714. [Google Scholar] [CrossRef] [PubMed]
- Tutunjian, S.; Eroglu, O.; Dannemann, M.; Modler, N.; Fischer, F. A numerical analysis of an energy directing method through friction heating during the ultrasonic welding of thermoplastic composites. J. Thermoplast. Compos. Mater. 2020, 33, 1569–1587. [Google Scholar] [CrossRef]
- Li, Y.; Lee, T.H.; Banu, M.; Hu, S.J. An integrated process-performance model of ultrasonic composite welding based on finite element and artificial neural network. J. Manuf. Process. 2020, 56, 1374–1380. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, Z.; Wang, Y.; Li, Y. Numerical study of contact behavior and temperature characterization in ultrasonic welding of CF/PA66. Polymers 2022, 14, 683. [Google Scholar] [CrossRef] [PubMed]
- Levy, A.; Le Corre, S.; Fernandez Villegas, I. Modeling of the heating phenomena in ultrasonic welding of thermoplastic composites with flat energy directors. J. Mater. Process. Technol. 2014, 214, 1361–1371. [Google Scholar] [CrossRef]
- Müller, F.W.; Mirz, C.; Weil, S.; Schiebahn, A.; Corves, B.; Reisgen, U. Weld quality characterization by vibration analysis for ultrasonic metal welding processes. J. Adv. Join. Process. 2023, 8, 100149. [Google Scholar] [CrossRef]
- Tan, X.; Zhi, Q.; Ma, J.; Chen, Y.; Li, Y. Simulation of temperature and weld growth mechanism in ultrasonic welding of carbon fiber reinforced polyamide 66 composite: Employing the high frequency real-time horn vibration. J. Mater. Res. Technol. 2023, 27, 5559–5571. [Google Scholar] [CrossRef]
- ASTM D1002-10; Standard Test Method for Apparent Shear Strength of Single-Lap-Joint Adhesively Bonded Metal Specimens by Tension Loading (Metal-to-Metal). ASTM International: West Conshohocken, PA, USA, 2010.
- Christov, I.C.; Christov, C. Stress retardation versus stress relaxation in linear viscoelasticity. Mech. Res. Commun. 2016, 72, 59–63. [Google Scholar] [CrossRef]
- Cha, J.; Kim, M.; Park, D.; Go, J.S. Experimental determination of the viscoelastic parameters of K-BKZ model and the influence of temperature field on the thickness distribution of ABS thermoforming. Int. J. Adv. Manuf. Technol. 2019, 103, 985–995. [Google Scholar] [CrossRef]
- Mohammadi, N.; Nasirshoaibi, M. Simulation of viscoelastic materials by ABAQUS. Math. Models Eng. 2015, 1, 67–71. [Google Scholar]
- Joven, R.; Das, R.; Ahmed, A.; Roozbehjavan, P.; Minaie, B. Thermal properties of carbon fiber-epoxy composites with different fabric weaves. In Proceedings of the SAMPE International Symposium Proceedings, Baltimore, MD, USA, 21–24 May 2012; Volume 14. [Google Scholar]
- Chen, K.; Zhang, Y. Numerical analysis of temperature distribution during ultrasonic welding process for dissimilar automotive alloys. Sci. Technol. Weld. Join. 2015, 20, 522–531. [Google Scholar] [CrossRef]
- Liu, Z.; Wang, G.; Yi, J. Study on heat transfer behaviors between Al-Mg-Si alloy and die material at different contact conditions based on inverse heat conduction algorithm. J. Mater. Res. Technol. 2020, 9, 1918–1928. [Google Scholar] [CrossRef]
- Cha, J.; Song, H.Y.; Hyun, K.; Go, J.S. Rheological measurement of the nonlinear viscoelasticity of the ABS polymer and numerical simulation of thermoforming process. Int. J. Adv. Manuf. Technol. 2020, 107, 2449–2464. [Google Scholar] [CrossRef]
- Tsujino, J.; Hongoh, M.; Yoshikuni, M.; Hashii, H.; Ueoka, T. Welding characteristics of 27, 40 and 67 kHz ultrasonic plastic welding systems using fundamental- and higher-resonance frequencies. Ultrasonics 2004, 42, 131–137. [Google Scholar] [CrossRef] [PubMed]
- Zhi, Q.; Tan, X.-R.; Lu, L.; Chen, L.-Y.; Li, J.-C.; Liu, Z.-X. Decomposition of ultrasonically welded carbon fiber/polyamide 66 and its effect on weld quality. Weld. World 2017, 61, 1017–1028. [Google Scholar] [CrossRef]
- Tan, X.; Zhi, Q.; Li, Y.; Chen, Y.; Hu, Y.; Chen, Y.; Shi, X.; Wu, H. Effect of MoS2 on microstructure and mechanical property of ultrasonically welded carbon fiber/polyamide 66. J. Mater. Res. Technol. 2024, 29, 2857–2867. [Google Scholar] [CrossRef]
- Benatar, A.; Cheng, Z. Ultrasonic welding of thermoplastics in the far-field. Polym. Eng. Sci. 1989, 29, 1699–1704. [Google Scholar] [CrossRef]
- Benatar, A.; Eswaran, R.V.; Nayar, S.K. Ultrasonic welding of thermoplastics in the near-field. Polym. Eng. Sci. 1989, 29, 1689–1698. [Google Scholar] [CrossRef]
- Levy, A.; Corre, S.L.; Poitou, A. Ultrasonic welding of thermoplastic composites: A numerical analysis at the mesoscopic scale relating processing parameters, flow of polymer and quality of adhesion. Int. J. Mater. Form. 2014, 7, 39–51. [Google Scholar] [CrossRef]
- Villegas, I.F. Strength development versus process data in ultrasonic welding of thermoplastic composites with flat energy directors and its application to the definition of optimum processing parameters. Compos. Part A Appl. Sci. Manuf. 2014, 65, 27–37. [Google Scholar] [CrossRef]
- Villegas, I.F. In situ monitoring of ultrasonic welding of thermoplastic composites through power and displacement data. J. Thermoplast. Compos. Mater. 2015, 28, 66–85. [Google Scholar] [CrossRef]
- Stoke, V.K. Vibration welding of thermoplastics. Part II: Analysis of the welding process. Polym. Eng. Sci. 1988, 28, 728–739. [Google Scholar] [CrossRef]
- Ma, H.; Wang, J.; Fang, Z. Cross-linking of a novel reactive polymeric intumescent flame retardant to ABS copolymer and its flame retardancy properties. Polym. Degrad. Stab. 2012, 97, 1596–1605. [Google Scholar] [CrossRef]
- Zhou, F.; Tang, W.; Xi, W.; Qian, L.; Wang, J.; Qiu, Y.; Chen, Y. Improving the fracture toughness, flame retardancy and smoke suppression of ABS by core-shell elastic flame retardant particles with P/Si synergistic effect. Polym. Degrad. Stab. 2024, 228, 110893. [Google Scholar] [CrossRef]
- Xu, M.; Liu, B.; Zhao, Y.; Wang, Z.; Dong, Z. Direct joining of thermoplastic ABS to aluminium alloy 6061-T6 using friction lap welding. Sci. Technol. Weld. Join. 2020, 25, 391–397. [Google Scholar] [CrossRef]
Materials | Density/(kg · m−3) | Poisson’s Ratio | Elastic Modulus/(MPa) | Thermal Conductivity/(W · m−1K−1) |
---|---|---|---|---|
ABS | 1100 | 0.394 | 2000 | 0.2256 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhi, Q.; Li, Y.; Tan, X.; Hu, Y.; Ma, Y. Ultrasonic Welding of Acrylonitrile–Butadiene–Styrene Thermoplastics without Energy Directors. Materials 2024, 17, 3638. https://doi.org/10.3390/ma17153638
Zhi Q, Li Y, Tan X, Hu Y, Ma Y. Ultrasonic Welding of Acrylonitrile–Butadiene–Styrene Thermoplastics without Energy Directors. Materials. 2024; 17(15):3638. https://doi.org/10.3390/ma17153638
Chicago/Turabian StyleZhi, Qian, Yongbing Li, Xinrong Tan, Yuhang Hu, and Yunwu Ma. 2024. "Ultrasonic Welding of Acrylonitrile–Butadiene–Styrene Thermoplastics without Energy Directors" Materials 17, no. 15: 3638. https://doi.org/10.3390/ma17153638
APA StyleZhi, Q., Li, Y., Tan, X., Hu, Y., & Ma, Y. (2024). Ultrasonic Welding of Acrylonitrile–Butadiene–Styrene Thermoplastics without Energy Directors. Materials, 17(15), 3638. https://doi.org/10.3390/ma17153638