Study on the Migration Patterns of Oxygen Elements during the Refining Process of Ti-48Al Scrap under Electromagnetic Levitation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Method
3. Results and Discussion
3.1. Thermodynamic Analysis of Deoxygenation
Element | A | B | C | D |
---|---|---|---|---|
Ti | −24,914 | −2.52 | — | 20.832 |
Al | −16,450 | −1.023 | — | 14.48 |
Cr | −20,680 | −1.31 | — | 16.68 |
3.2. Results of Deoxidation Experiments under Electromagnetic Levitation Conditions
3.3. Results of the Changes in Elemental Distribution and Phase Composition during EML Experiments
3.4. Analysis Results of Element Migration during EML Deoxidation Process
- (1)
- Oxygen atoms move into the melt boundary layer from the Ti-Al droplet interior.
- (2)
- Oxygen atoms move through the melt boundary layer to the surface of Ti-Al droplets.
- (3)
- Volatilization of oxygen atoms occurs at the gas–liquid interface.
- (4)
- Oxygen atoms move through the gaseous boundary layer to the reaction chamber.
- (5)
- Oxygen atoms condense on the glass wall or are extracted by a flowing gas system or vacuum system.
4. Conclusions
- (1)
- The thermodynamic analysis of deoxidation indicated that oxygen in the Ti-Al system can be removed with the volatilization of aluminum, and the reaction is facilitated by increasing temperature. The deoxidation condition experiments revealed an optimal levitation temperature, time, and initial oxygen content of 2173 K, 40 min, and 0.5 at.%, resulting in an oxygen removal ratio of 62%.
- (2)
- The impure oxygen in the alloy were significantly removed by EML, with a transition from a dispersed to a clustered distribution. The phase composition of the alloy changed from the TiAl and Ti3Al phases to a single Ti3Al phase. Furthermore, the lattice parameter c/a was reduced after EML.
- (3)
- The refinement process of the Ti-48Al alloy scrap under EML can be divided into three forms of oxygen migration: (a) detachment from the crystal lattice to form AlO and Al2O, (b) formation of metal oxides remaining in the alloy melt, and (c) evaporation and adherence to the quartz tube wall as metal oxides.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Güther, V.; Allen, M.; Klose, J.; Clemens, H. Metallurgical processing of titanium aluminides on industrial scale. Intermetallics 2018, 103, 12–22. [Google Scholar] [CrossRef]
- Pere, B.V.; Joachim, G.; Andreas, S.; Norbert, S.; Jan, H.; Guillermo, R. Peritectic titanium alloys for 3D printing. Nat. Commun. 2018, 9, 3426. [Google Scholar]
- Mermer, E.; Çinici, H.; Uğur, G.; Ünal, R. Development of an Al rich Ti-Al alloy with better ductility. Vacuum 2023, 214, 112224. [Google Scholar] [CrossRef]
- Kim, T.; Oh, J.-M.; Cho, G.-H.; Chang, H.; Jang, H.D.; Lim, J.-W. Surface and internal deoxidation behavior of titanium alloy powder deoxidized by Ca vapor: Comparison of the deoxidation capability of solid solution and intermetallic titanium alloys. Appl. Surf. Sci. 2020, 534, 147623. [Google Scholar] [CrossRef]
- Uwanyuze, R.S.; Kanyo, J.E.; Myrick, S.F.; Schafföner, S. A review on alpha case formation and modeling of mass transfer during investment casting of titanium alloys. J. Alloys Compd. 2021, 865, 158558. [Google Scholar] [CrossRef]
- Chong, Y.; Gholizadeh, R.; Tsuru, T.; Zhang, R.; Inoue, K.; Gao, W.; Godfrey, A.; Mitsuhara, M.; Morris, J., Jr.; Minor, A.M. Grain refinement in titanium prevents low temperature oxygen embrittlement. Nat. Commun. 2023, 14, 404. [Google Scholar] [CrossRef]
- Reitz, J.; Lochbichler, C.; Friedrich, B. Recycling of gamma titanium aluminide scrap from investment casting operations. Intermetallics 2011, 19, 762–768. [Google Scholar] [CrossRef]
- Kim, T.; Oh, J.-M.; Cho, G.-H.; Park, J.; Lim, J.-W. Comparison of deoxidation capability of solid solution and intermetallic titanium alloy powders deoxidized by calcium vapor. J. Alloys Compd. 2020, 828, 154220. [Google Scholar] [CrossRef]
- Iizuka, A.; Ouchi, T.; Okabe, T.H. New Deoxidation Method of Titanium Using Metal Filter in Molten Salt. Metall. Mater. Trans. B 2022, 53, 1371–1382. [Google Scholar] [CrossRef]
- Kim, T.; Lim, J.W. Synthesis of low–oxygen Ti3AlC2 powders by hydrogenation–dehydrogenation and deoxidation from titanium scraps. J. Am. Ceram. Soc. 2023, 106, 7311–7321. [Google Scholar] [CrossRef]
- Takeda, O.; Ouchi, T.; Okabe, T.H. Recent progress in titanium extraction and recycling. Metall. Mater. Trans. B 2020, 51, 1315–1328. [Google Scholar] [CrossRef]
- Zhang, Y.; Fang, Z.Z.; Xia, Y.; Sun, P.; Van Devener, B.; Free, M.; Lefler, H.; Zheng, S. Hydrogen assisted magnesiothermic reduction of TiO2. Chem. Eng. J. 2017, 308, 299–310. [Google Scholar] [CrossRef]
- Suzuki, R.O.; Fukui, S. Reduction of TiO2 in molten CaCl2 by Ca deposited during CaO electrolysis. Mater. Trans. 2004, 45, 1665–1671. [Google Scholar] [CrossRef]
- Reddy, R.G.; Shinde, P.S.; Liu, A. Review—The Emerging Technologies for Producing Low-Cost Titanium. J. Electrochem. Soc. 2021, 168, 042502. [Google Scholar] [CrossRef]
- Dring, K.; Dashwood, R.; Inman, D. Predominance diagrams for electrochemical reduction of titanium oxides in molten CaCl2. J. Electrochem. Soc. 2005, 152, 184. [Google Scholar] [CrossRef]
- Su, Y.; Wang, L.; Luo, L.; Jiang, X.; Guo, J.; Fu, H. Deoxidation of titanium alloy using hydrogen. Int. J. Hydrogen Energy 2009, 34, 8958–8963. [Google Scholar] [CrossRef]
- Gökelma, M.; Celik, D.; Tazegul, O.; Cimenoglu, H.; Friedrich, B. Characteristics of Ti6Al4V powders recycled from turnings via the HDH technique. Metals 2018, 8, 336. [Google Scholar] [CrossRef]
- Wang, L.; Su, Y.; Wang, S.; Luo, L.; Fu, H. Effect of melt hydrogenation on structure and hardness of TC21 alloy. Rare. Metal Mat. Eng. 2011, 40, 321–324. [Google Scholar]
- Bartosinski, M.; Hassan-Pour, S.; Friedrich, B.; Ratiev, S.; Ryabtsev, A. Deoxidation Limits of Titanium Alloys during Pressure Electro Slag Remelting. Mater. Sci. Eng. Conf. Ser. 2016, 143, 12009. [Google Scholar] [CrossRef]
- Cheng, C.; Dou, Z.H.; Zhang, T.A.; Zhang, H.J.; Su, J.M. Synthesis of As-Cast Ti-Al-V Alloy from Titanium-Rich Material by Thermite Reduction. JOM 2017, 69, 1818–1823. [Google Scholar] [CrossRef]
- Brillo, J.; Egry, I.; Novakovic, R. Surface tension of liquid Cu-Ti binary alloys measured by electromagnetic levitation and thermodynamic modelling. Appl. Surf. Sci. 2011, 257, 7739–7745. [Google Scholar]
- Yan, P.; Zhang, G.; Yi, B.; Mclean, A. Kinetic characterization of phosphorus removal from the surface of metallurgical grade (MG) silicon droplets during electromagnetic levitation. Int. J. Heat Mass Trans. 2023, 211, 124200. [Google Scholar] [CrossRef]
- Vache, N.; Cadoret, Y.; Dod, B.; Monceau, D. Modeling the oxidation kinetics of titanium alloys: Review, method and application to Ti-64 and Ti-6242s alloys. Corros. Sci. 2021, 178, 109041. [Google Scholar] [CrossRef]
- Brandes, E.A.; Brook, G.B. Smithells Metals Reference Book; Butterworth-Heinemann: Oxford, UK, 1983. [Google Scholar]
- Baehr, H.D. Thermochemical Properties of Inorganic Substances; Springer: Berlin/Heidelberg, Germany, 1992; Volume 58, p. 103. [Google Scholar]
- Ono, K.; Moriyama, J. Deoxidation of high-melting-point metals and alloys in vacuum. Metall. Mater. Trans. B 1982, 13, 241–249. [Google Scholar] [CrossRef]
- Oh, J.-M.; Seo, J.-H.; Lim, J.-W. Refining effect of TiAl intermetallic compounds prepared by hydrogen plasma arc melting from scraps of Ti–Al mixture. Jpn. J. Appl. Phys. 2019, 59, SAAB07. [Google Scholar]
- Chase, M.W. NIST-JANAF thermochemical tables. J. Phys. Chem. Ref. Data 1998, 9, 1529–1564. [Google Scholar]
- Sabat, K.C.; Murphy, A.B. Hydrogen plasma processing of iron ore. Metall. Mater. Trans. B 2017, 48, 1561–1594. [Google Scholar] [CrossRef]
- Song, Y.; Dou, Z.; Zhang, T.; Liu, Y. A novel continuous and controllable method for fabrication of as-cast TiAl alloy. J. Alloys Compd. 2019, 789, 266–275. [Google Scholar] [CrossRef]
- Dong, G.; You, X.; Xu, Z.; Wang, Y.; Tan, Y. A new model for studing the evaporation behavior of alloy elements in DD98M alloy during electron beam smelting. Vacuum 2022, 195, 110641. [Google Scholar] [CrossRef]
- Schuster, J.C.; Palm, M. Reassessment of the binary Aluminum-Titanium phase diagram. J. Phase Equilib. Diff. 2006, 27, 255–277. [Google Scholar] [CrossRef]
Alloy | c/a | |||||
---|---|---|---|---|---|---|
(110) | (201) | (110) | ||||
Initial sample: TiAl | 2.8228 | 4.0693 | 1.4416 | 2.3172 | 2.3253 | 2.0031 |
Initial sample: Ti3Al | 5.7347 | 4.6327 | 0.8078 | |||
Refined sample | 5.7381 | 4.6101 | 0.8034 | 2.3070 | 2.1874 | 1.6906 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pang, X.; Zhang, G.; Yan, P.; Xiao, Z.; Wang, X. Study on the Migration Patterns of Oxygen Elements during the Refining Process of Ti-48Al Scrap under Electromagnetic Levitation. Materials 2024, 17, 3709. https://doi.org/10.3390/ma17153709
Pang X, Zhang G, Yan P, Xiao Z, Wang X. Study on the Migration Patterns of Oxygen Elements during the Refining Process of Ti-48Al Scrap under Electromagnetic Levitation. Materials. 2024; 17(15):3709. https://doi.org/10.3390/ma17153709
Chicago/Turabian StylePang, Xinchen, Guifang Zhang, Peng Yan, Zhixiang Xiao, and Xiaoliang Wang. 2024. "Study on the Migration Patterns of Oxygen Elements during the Refining Process of Ti-48Al Scrap under Electromagnetic Levitation" Materials 17, no. 15: 3709. https://doi.org/10.3390/ma17153709
APA StylePang, X., Zhang, G., Yan, P., Xiao, Z., & Wang, X. (2024). Study on the Migration Patterns of Oxygen Elements during the Refining Process of Ti-48Al Scrap under Electromagnetic Levitation. Materials, 17(15), 3709. https://doi.org/10.3390/ma17153709